Skip to main content
Log in

Investigation of the effect of wall geometry change on thermal resistance, temperature uniformity and FOM of a micro-heatsink containing nanofluid flow

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the numerical study of the thermal efficiency of a micro-heatsink (MHS) with nanofluid flow of water and alumina has been done. The heatsink (HS) is designed to cool an electronic component. Four different wall models have been studied in MHS. By changing the inlet velocity, the volume percentage of nanoparticles for different HS models, the values of heat transfer coefficient, thermal resistance, temperature uniformity and FOM have been studied. The equations are discretized using the volume control method, and FLUENT software is used for simulation. The results of the study demonstrated that in the case that pin fins were tangential, the lowest temperature and thermal resistance, as well as the best temperature uniformity occurred on the contact surface of the MHS and microchip. Some of the models proposed in this article had better thermal performance compared to similar HSs and could reduce the temperature of microchips to lower levels and improve the performance of electronic devices. Finally, it is suggested that the geometry of connected fin pins be used as heatsink walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

Abbreviations

C p :

Specific heat \((\mathrm{J}/\mathrm{kg}.\mathrm{K})\)

d :

Diameter of the NPs (nm)

D:

Distance between fin center (m)

FOM:

Figure of Merit

H:

Heat transfer coefficient \((W/{m}^{2}.K)\)

HS:

Heat sink

K:

Thermal conductivity \((W/m.K)\)

MHS:

Micro-heatsink

NF:

Nanofluid

\(p\) :

Pressure \((Pa)\)

PP:

Pumping power (W)

\(q\mathrm{^{\prime}}\mathrm{^{\prime}}\) :

Heat flux (W/m2)

\(\dot{Q}\) :

Volumetric flow (m3/s)

R:

Thermal resistance (m2.K/W)

T:

Temperature (K)

V:

Velocity (m/s

Φ:

Solid volume fraction

Θ:

Temperature uniformity (m2.K/W)

Μ:

Dynamic viscosity \((kg/m.s)\)

Ρ:

Density (\(kg{/m}^{3})\)

∆P:

Pressure difference

Ave:

Average

eff:

Effective

f:

Pure fluid

In:

Inlet

m:

Average fluid temperature

Max:

Maximum temperatures on the bottom surface of the MHS

Mid:

Average temperature of the bottom of the MHS

Min:

Minimum temperatures on the bottom surface of the MHS

Nf:

Nanofluid

Out:

Outlet

P:

Solid nanoparticle

References

  1. A. Mohammed Adham, N. Mohd-Ghazali, R. Ahmad, Thermal and hydrodynamic analysis of microchannel heat sinks: a review. Renew. Sustain. Energy Rev. 21, 614–622 (2013)

    Article  Google Scholar 

  2. J.F. Tullius, R. Vajtai, Y. Bayazitoglu, A review of cooling in microchannels. Heat Transf. Eng. 32(7–8), 527–54 (2011)

    Article  ADS  Google Scholar 

  3. W. Nakayama, Thermal management of electronic equipment: a review of technology and research topics. Appl. Mech. Rev. 47, 1847–1868 (1986)

    Article  ADS  Google Scholar 

  4. A.H. Pordanjani, S. Aghakhani, M. Afrand, B. Mahmoudi, O. Mahian, S. Wongwises, An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers. Manag. 198, 111886 (2019)

    Article  Google Scholar 

  5. A.H. Pordanjani et al., Nanofluids: physical phenomena, applications in thermal systems and the environment effects-a critical review. J. Clean. Prod. 320, 128573 (2021)

    Article  Google Scholar 

  6. S.S. Murshed, C.N. De Castro, A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew. Sustain. Energy Rev. 78, 821–833 (2017)

    Article  Google Scholar 

  7. S. Chingulpitak, S. Wongwises, A review of the effect of flow directions and behaviors on the thermal performance of conventional heat sinks. Int. J. Heat Mass Transf. 81, 10–18 (2015)

    Article  Google Scholar 

  8. S. Aghakhani, A.H. Pordanjani, M. Afrand, M. Sharifpur, J.P. Meyer, Natural convective heat transfer and entropy generation of alumina/water nanofluid in a tilted enclosure with an elliptic constant temperature: applying magnetic field and radiation effects. Int. J. Mech. Sci. 174, 105470 (2020)

    Article  Google Scholar 

  9. S. Aghakhani, A.H. Pordanjani, A. Karimipour, A. Abdollahi, M. Afrand, Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-Shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput. Fluids 176, 51–67 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.H. Pordanjani, S. Aghakhani, Numerical investigation of natural convection and irreversibilities between two inclined concentric cylinders in presence of uniform magnetic field and radiation. Heat Transf. Eng. 2021, 1–21 (2021)

    Google Scholar 

  11. M. Afrand, S. Farahat, A.H. Nezhad, G. Ali Sheikhzadeh, F. Sarhaddi, 3-D numerical investigation of natural convection in a tilted cylindrical annulus containing molten potassium and controlling it using various magnetic fields. Int. J. Appl. Electromagn. Mech. 46(4), 809–821 (2014)

    Article  Google Scholar 

  12. M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, Numerical simulation of electrically conducting fluid flow and free convective heat transfer in an annulus on applying a magnetic field. Heat Transf. Res. 45(8), 749–766 (2014)

    Article  Google Scholar 

  13. J. Choi, M. Jeong, J. Yoo, M. Seo, A new CPU cooler design based on an active cooling heatsink combined with heat pipes. Appl. Thermal Eng. 44, 50–56 (2012)

    Article  Google Scholar 

  14. M.W. Alam et al., CPU heat sink cooling by triangular shape micro-pin-fin: Numerical study. Int. Commun. Heat Mass Transf. 112, 104455 (2020)

    Article  Google Scholar 

  15. L. Yang, J.N. Huang, M. Mao, W. Ji, Numerical assessment of Ag-water nano-fluid flow in two new microchannel heatsinks: Thermal performance and thermodynamic considerations. Int. Commun. Heat Mass Transf. 110, 104415 (2020)

    Article  Google Scholar 

  16. Y. Wang, K. Zhu, Z. Cui, J. Wei, Effects of the location of the inlet and outlet on heat transfer performance in pin fin CPU heat sink. Appl. Thermal Eng. 151, 506–513 (2019)

    Article  Google Scholar 

  17. N. Zhao, L. Guo, C. Qi, T. Chen, X. Cui, Experimental study on thermo-hydraulic performance of nanofluids in CPU heat sink with rectangular grooves and cylindrical bugles based on exergy efficiency. Energy Convers. Manag. 181, 235–246 (2019)

    Article  Google Scholar 

  18. D. Kim et al., Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr. Appl. Phys. 9(2), e119–e123 (2009)

    Article  ADS  Google Scholar 

  19. V.L. Vinodhan, K.S. Rajan, Computational analysis of new microchannel heat sink configurations. Energy Convers. Manag. 86, 595–604 (2014)

    Article  Google Scholar 

  20. Z. Zhang, L. Feng, H. Liu, L. Wang, S. Wang, Z. Tang, Mo 6+–P 5+ co-doped Li 2 ZnTi 3 O 8 anode for Li-storage in a wide temperature range and applications in LiNi 0.5 Mn 1.5 O 4/Li 2 ZnTi 3 O 8 full cells. Inorg. Chem. Front. 9(1), 35–43 (2022)

    Article  Google Scholar 

  21. L. Yang et al., Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte. Ceram. Int. 46(8), 10917–10924 (2020)

    Article  Google Scholar 

  22. F. Meng, D. Wang, P. Yang, G. Xie, Application of sum of squares method in nonlinear H∞ control for satellite attitude maneuvers. Complexity 2019, 5124108 (2019)

    Article  MATH  Google Scholar 

  23. G. Wang, D. Liu, S. Fan, Z. Li, J. Su, High-k erbium oxide film prepared by sol-gel method for low-voltage thin-film transistor. Nanotechnology 32(21), 215202 (2021)

    Article  ADS  Google Scholar 

  24. T. Gao et al., Carbon fiber reinforced polymer in drilling: from damage mechanisms to suppression. Compos. Struct. 286, 115232 (2022)

    Article  Google Scholar 

  25. S. Mu et al., Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 8(7), p.nwaa178 (2021)

    Google Scholar 

  26. J. Zhang et al., Pd/PANI/Ti composite electrocatalyst with efficient electrocatalytic performance: synthesis, characterization, stability, kinetic studies, and degradation mechanism. J. Alloys Compd. 902, 163723 (2022)

    Article  Google Scholar 

  27. Q. Yin et al., Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. Int. J. Precis. Eng. Manuf.-Green Technol. 8(6), 1629–1647 (2021)

    Article  Google Scholar 

  28. T. Gao et al., Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. J. Mater. Process. Technol. 290, 116976 (2021)

    Article  ADS  Google Scholar 

  29. Z. Duan et al., Milling force model for aviation aluminum alloy: academic insight and perspective analysis. Chin. J. Mech. Eng. 34(1), 1–35 (2021)

    Article  Google Scholar 

  30. H.W. Xian, N.A.C. Sidik, G.J.J.O.T.A. Najafi, Recent state of nanofluid in automobile cooling systems. J. Therm. Anal. Calorim. 135(2), 981–1008 (2019)

    Article  Google Scholar 

  31. Y.-M. Chu, M. Ibrahim, T. Saeed, A.S. Berrouk, E.A. Algehyne, R. Kalbasi, Examining rheological behavior of MWCNT-TiO2/5W40 hybrid nanofluid based on experiments and RSM/ANN modeling. J. Mol. Liq. 333, 115969 (2021)

    Article  Google Scholar 

  32. M. Ibrahim, T. Saeed, Y.M. Chu, H.M. Ali, G. Cheraghian, R. Kalbasi, Comprehensive study concerned graphene nano-sheets dispersed in ethylene glycol: experimental study and theoretical prediction of thermal conductivity. Powder Technol. 386, 51–59 (2021)

    Article  Google Scholar 

  33. L. Tang et al., Biological stability of water-based cutting fluids: progress and application. Chin. J. Mech. Eng. 35(1), 3 (2022)

    Article  Google Scholar 

  34. Z. Zhang, M. Sui, C. Li, Z. Zhou, B. Liu, Y. Chen, Z. Said, S. Debnath, S. Sharma, Residual stress of grinding cemented carbide using MoS2 nano-lubricant. Int. J. Adv. Manuf. Technol. 2022, 1–15 (2022)

    Google Scholar 

  35. M.H. Esfe, S. Esfandeh, M.K. Amiri, M. Afrand, A novel applicable experimental study on the thermal behavior of SWCNTs (60%)-MgO (40%)/EG hybrid nanofluid by focusing on the thermal conductivity. Powder Technol. 342, 998–1007 (2019)

    Article  Google Scholar 

  36. M.H. Esfe, H.R. Raki, M.R.S. Emami, M. Afrand, Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol. 342, 808–816 (2019)

    Article  Google Scholar 

  37. M.H. Esfe, H. Rostamian, S. Esfandeh, M. Afrand, Modeling and prediction of rheological behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant by artificial neural network using experimental data. Phys. A Stat. Mech. Appl. 510, 625–634 (2018)

    Article  Google Scholar 

  38. R. Ranjbarzadeh, A. Akhgar, S. Musivand, M. Afrand, Effects of graphene oxide-silicon oxide hybrid nanomaterials on rheological behavior of water at various time durations and temperatures: synthesis, preparation and stability. Powd. Technol. 335, 375–387 (2018)

    Article  Google Scholar 

  39. E. Shahsavani, M. Afrand, R. Kalbasi, Using experimental data to estimate the heat transfer and pressure drop of non-Newtonian nanofluid flow through a circular tube: Applicable for use in heat exchangers. Appl. Therm. Eng. 129, 1573–1581 (2018)

    Article  Google Scholar 

  40. M.S. Shadloo, Application of support vector machines for accurate prediction of convection heat transfer coefficient of nanofluids through circular pipes. Int. J. Numer. Methods Heat Fluid Flow 31(8), 2660–2679 (2020)

    Article  Google Scholar 

  41. J. Mustafa, S. Alqaed, R. Kalbasi, "Challenging of using CuO nanoparticles in a flat plate solar collector-energy saving in a solar-assisted hot process stream. J. Taiwan Inst. Chem. Eng. 124, 258–265 (2021)

    Article  Google Scholar 

  42. M.E.H. Attia et al., Sustainable potable water production from conventional solar still during the winter season at Algerian dry areas: energy and exergy analysis. J. Therm. Anal. Calorim. 145(3), 1215–1225 (2021)

    Article  Google Scholar 

  43. P. Rana, N. Srikantha, T. Muhammad, G. Gupta, Computational study of three-dimensional flow and heat transfer of 25 nm Cu–H2O nanoliquid with convective thermal condition and radiative heat flux using modified Buongiorno model. Case Stud. Therm. Eng. 27, 101340 (2021)

    Article  Google Scholar 

  44. P. Rana, S.A. Shehzad, T. Ambreen, M.M. Selim, Numerical study based on CVFEM for nanofluid radiation and magnetized natural convected heat transportation. J. Molec. Liq. 334, 116102 (2021)

    Article  Google Scholar 

  45. M.-W. Tian, S. Rostami, S. Aghakhani, A.S. Goldanlou, C. Qi, A techno-economic investigation of 2D and 3D configurations of fins and their effects on heat sink efficiency of MHD hybrid nanofluid with slip and non-slip flow. Int. J. Mech. Sci. 189, 105975 (2021)

    Article  Google Scholar 

  46. M.M. Alqarni, E.E. Mahmoud, T. Saeed, V. Ali, M. Ibrahim, Numerical simulation and exergy analysis of a novel nanofluid-cooled heat sink. J. Therm. Anal. Calorim. 145(3), 1651–1660 (2021)

    Article  Google Scholar 

  47. M. Ibrahim, S. Saleem, Y.-M. Chu, M. Ullah, B. Heidarshenas, An investigation of the exergy and first and second laws by two-phase numerical simulation of various nanopowders with different diameter on the performance of zigzag-wall micro-heat sink (ZZW-MHS). J. Therm. Anal. Calorim. 145(3), 1611–1621 (2021)

    Article  Google Scholar 

  48. M. Ibrahim, A.S. Berrouk, E.A. Algehyne, T. Saeed, Y.-M. Chu, Energetic and exergetic analysis of a new circular micro-heat sink containing nanofluid: applicable for cooling electronic equipment. J. Therm. Anal. Calorim. 145(3), 1547–1557 (2021)

    Article  Google Scholar 

  49. M.M. Alqarni, E.E. Mahmoud, E.A. Algehyne, T. Saeed, A.S. Berrouk, M. Ibrahim, Numerical evaluation of the effect of nano-additive type on the second-law performance of γ-AlOOH nano-fluid flow in a wavy microchannel. Chem. Eng. Commun. 2021, 1–13 (2021)

    Article  Google Scholar 

  50. M. Bahiraei, S. Heshmatian, Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene–silver nanoparticles. Energy Convers. Manag. 168, 357–370 (2018)

    Article  Google Scholar 

  51. M. Bahiraei, A. Monavari, M. Naseri, H. Moayedi, Irreversibility characteristics of a modified microchannel heat sink operated with nanofluid considering different shapes of nanoparticles. Int. J. Heat Mass Transf. 151, 119359 (2020)

    Article  Google Scholar 

  52. A. Karamoozian, H. Jiang, C.A. Tan, Probability based survey of braking system: a pareto-optimal approach. IEEE Access 8, 128385–128406 (2020)

    Article  Google Scholar 

  53. M. Karami, S. Tashakor, A. Afsari, M. Hashemi-Tilehnoee, Effect of the baffle on the performance of a micro pin fin heat sink. Therm. Sci. Eng. Progr. 14, 100417 (2019)

    Article  Google Scholar 

  54. A. Karamoozian, C.A. Tan, L. Wang, M.R. Akbarzadeh, G. Chen, Sensitivity analysis of the equal angle divider mechanism kinematics with the synthesis of the joint gap tolerances. Mech. Based Design Struct. Mach. 46(4), 499–519 (2018)

    Article  Google Scholar 

  55. X. Du et al., Piezo-phototronic effect promoted carrier separation in coaxial p-n junctions for self-powered photodetector. Nano Energy 92, 106694 (2022)

    Article  Google Scholar 

  56. X. Zhang et al., Preparation of PI porous fiber membrane for recovering oil-paper insulation structure. J. Mater. Sci. Mater. Electron. 31(16), 13344–13351 (2020)

    Article  ADS  Google Scholar 

  57. A. Karamoozian, C.A. Tan, L.J.M. Wang, Squeal analysis of thin-walled lattice brake disc structure. Mater. Design 149, 1–14 (2018)

    Article  Google Scholar 

  58. S. Zimmermann, M.K. Tiwari, I. Meijer, S. Paredes, B. Michel, D. Poulikakos, Hot water cooled electronics: exergy analysis and waste heat reuse feasibility. Int. J. Heat Mass Transf. 55(23), 6391–6399 (2012)

    Article  Google Scholar 

  59. W. A. Khan, M. Yovanovich, and J. Culham, Optimization of microchannel heat sinks using entropy generation minimization method. In: Twenty-second annual ieee semiconductor thermal measurement and management symposium, 2006, pp. 78–86: IEEE

  60. X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016)

    Article  Google Scholar 

  61. W. Tai et al., Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Molec. Immunol. 17(6), 613–620 (2020)

    Article  Google Scholar 

  62. X. Wang, M. Chen, D. Tate, H. Rahimi, S. Zhang, Numerical investigation on hydraulic and thermal characteristics of micro latticed pin fin in the heat sink. Int. J. Heat Mass Transf. 149, 119157 (2020)

    Article  Google Scholar 

  63. A. Elghool et al., Enhancing the performance of a thermo-electric generator through multi-objective optimisation of heat pipes-heat sink under natural convection. Energy Convers. Manag. 209, 112626 (2020)

    Article  Google Scholar 

  64. Y. Ma, A. Shahsavar, P. Talebizadehsardari, Two-phase mixture simulation of the effect of fin arrangement on first and second law performance of a bifurcation microchannels heatsink operated with biologically prepared water-Ag nanofluid. Int. Commun. Heat Mass Transf. 114, 104554 (2020)

    Article  Google Scholar 

  65. K. Khanafer, K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54(19), 4410–4428 (2011)

    Article  MATH  Google Scholar 

  66. M. Bahiraei, S. Heshmatian, Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: thermal performance and irreversibility considerations. Energy Convers. Manag. 149, 155–167 (2017)

    Article  Google Scholar 

  67. T. Saravanakumar, D. Senthil Kumar, Performance analysis on heat transfer characteristics of heat SINK with baffles attachment. Int. J. Thermal Sci. 142, 14–19 (2019)

    Article  Google Scholar 

  68. A. Shahsavar, M.M. Baseri, A.A.A.A. Al-Rashed, M. Afrand, Numerical investigation of forced convection heat transfer and flow irreversibility in a novel heatsink with helical microchannels working with biologically synthesized water-silver nano-fluid. Int. Commun. Heat Mass Transf. 108, 104324 (2019)

    Article  Google Scholar 

  69. Y. Ma, A. Shahsavar, P. Talebizadehsardari, Two-phase mixture simulation of the effect of fin arrangement on first and second law performance of a bifurcation microchannels heatsink operated with biologically prepared water-Ag nanofluid. Int. Commun. Heat Mass Transf. 114, 104554 (2020)

    Article  Google Scholar 

  70. L. Yang, J.-N. Huang, M. Mao, W. Ji, Numerical assessment of Ag-water nano-fluid flow in two new microchannel heatsinks: thermal performance and thermodynamic considerations. Int. Commun. Heat Mass Transf. 110, 104415 (2020)

    Article  Google Scholar 

  71. Electricity prices in Europe 2019 by country – Data Eurostat, Graphics – Strom-Report.

Download references

Acknowledgements

This research was supported by Deanship of Scientific Research, Majmaah University, Majmaah, Kingdom of Saudi Arabia, under project number R-2022-53.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vakkar Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M., Shah, S.I.A., El-Shorbagy, M.A. et al. Investigation of the effect of wall geometry change on thermal resistance, temperature uniformity and FOM of a micro-heatsink containing nanofluid flow. Eur. Phys. J. Plus 137, 310 (2022). https://doi.org/10.1140/epjp/s13360-022-02469-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02469-1

Navigation