Skip to main content
Log in

Electrosound and asymmetry of the I‒V characteristic induced by ultrasound in the RexMn1−xS (Re = Tm, Yb)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A correlation between the temperatures corresponding to the maxima of the sound attenuation and temperature resistance coefficient in the RexMn1−xS solid solutions related to the condensation of electrons and holes has been established. X-ray diffraction, energy-dispersive X-ray spectrum, and scanning electron microscope techniques have been used to investigate the microstructure of the samples. In the Yb0.2Mn0.8S compound, a decrease in the ultrasound attenuation with increasing temperature has been observed. The functional dependences of the electrosound on the ultrasound intensity and carrier type and the change in the electrosound sign with temperature have been established. The asymmetry of the I–V characteristic depending on the ultrasound intensity and the attenuation coefficient depending on the electric field has been found. The nonlinear attenuation of the ultrasound as a function of the intensity has been observed. Model of elastic and inelastic scattering of current carriers by acoustic phonons, deformation interaction is used to explain the asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. R. Vinoth, P. Karthik et al., Phys. Chem. Chem. Phys. 18, 5179 (2016). https://doi.org/10.1039/C5CP08041J

    Article  Google Scholar 

  2. L.A. Kulakova, I.S. Tarasov, JETP Lett. 78, 67 (2003). https://doi.org/10.1134/1.1615531

    Article  ADS  Google Scholar 

  3. L.A. Kulakova, V. Gorelov et al., Sol. St. Commun. 152, 1690 (2012). https://doi.org/10.1016/j.ssc.2012.04.065

    Article  ADS  Google Scholar 

  4. I.V. Rozhansky, M.B. Lifshits et al., Phys. Rev. B 80, 085314 (2009). https://doi.org/10.1103/PhysRevB.80.085314

    Article  ADS  Google Scholar 

  5. S. Buyukkose, B. Vratzov et al., J. Appl. Phys. Lett. 102, 013112 (2013). https://doi.org/10.1063/1.4774388

    Article  ADS  Google Scholar 

  6. J.H. He, J. Gao, H.Z. Guo, J. Appl. Phys. Lett. 97, 122107 (2010). https://doi.org/10.1063/1.3491287

    Article  ADS  Google Scholar 

  7. O. Olikh, K. Voytenko, Ultrasonics 66, 1 (2016). https://doi.org/10.1016/j.ultras.2015.12.001

    Article  Google Scholar 

  8. O. Olikh et al., J. Semicond. 37, 122002 (2016). https://doi.org/10.1088/1674-4926/37/12/122002

    Article  ADS  Google Scholar 

  9. C. Rocke, S. Zimmermann et al., Phys. Rev. Lett. 78, 4099 (1997). https://doi.org/10.1103/PhysRevLett.78.4099

    Article  ADS  Google Scholar 

  10. M. Streibl, A. Wixforth et al., Appl. Phys. Lett. 75, 4139 (1999). https://doi.org/10.1063/1.125562

    Article  ADS  Google Scholar 

  11. M.J. Hoskins, H. Morko, B.J. Hunsinger, Appl. Phys. Lett. 41, 332 (1982). https://doi.org/10.1063/1.93526

    Article  ADS  Google Scholar 

  12. W.J. Tanski, S.W. Merritt, R.N. Sacks et al., Appl. Phys. Lett. 52, 18 (1988). https://doi.org/10.1109/IEDM.1987.191582

    Article  ADS  Google Scholar 

  13. V.I. Pustovoit, UFN 97, 257 (1969). https://doi.org/10.3367/UFNr.0097.196902c.0257

    Article  Google Scholar 

  14. Yu.M. Galperin, V.L. Gurevich, V.I. Kozub, UFN 128, 107 (1979). https://doi.org/10.3367/UFNr.0128.197905d.0107

    Article  Google Scholar 

  15. Yu. Gulyaev, F.S. Hickernell, Acoust. Phys. 5, 81 (2005). https://doi.org/10.1134/1.1851632

    Article  ADS  Google Scholar 

  16. R.W. Smith, Phys. Rev. Lett. 9, 87 (1962). https://doi.org/10.1103/PhysRevLett.9.87

    Article  ADS  Google Scholar 

  17. S.K. Abdelraheem, D.P. Blyth, N. Balkan, Phys. Stat. Sol. A 185, 247 (2001). https://doi.org/10.1002/1521-396X(200106)185:2%3c247::AID-PSSA247%3e3.0.CO;2-H

    Article  ADS  Google Scholar 

  18. S.Y. Mensah, N.G. Mensah et al., Phys. E. 28, 500 (2005). https://doi.org/10.1016/j.physe.2005.05.050

    Article  Google Scholar 

  19. G. Weinreich, T.M. Sanders, H.G. White, Phys. Rev. 114, 33 (1959). https://doi.org/10.1103/PhysRev.114.33

    Article  ADS  Google Scholar 

  20. M. Rotter, A.V. Kalameitsev et al., Phys. Rev. Lett. 82, 2171 (1999). https://doi.org/10.1103/PHYSREVLETT.82.2171

    Article  ADS  Google Scholar 

  21. L. Wang, S. Liu et al., Nat. Nanotech. 15, 661 (2020). https://doi.org/10.1038/s41565-020-0700-y

    Article  ADS  Google Scholar 

  22. M.M. Yang, Z.D. Luo et al., Nature 584, 377 (2020). https://doi.org/10.1038/s41586-020-2602-4

    Article  Google Scholar 

  23. L. Peters et al., Phys. Rev. B 92, 035143 (2015). https://doi.org/10.1103/PhysRevB.92.035143

    Article  ADS  Google Scholar 

  24. A. Wixforth, Phys. Rev, 3, 14 (1999). https://physics.aps.org/story/v3/st14

  25. S.S. Aplesnin, A.M. Kharkov et al., JMMM 352, 1 (2014). https://doi.org/10.1016/j.jmmm.2013.09.061

    Article  ADS  Google Scholar 

  26. S.S. Aplesnin, A.M. Kharkov et al., JMMM 347, 10 (2013). https://doi.org/10.1016/j.jmmm.2013.07.044

    Article  ADS  Google Scholar 

  27. G. Benedek et al., J. Phys. Chem. Lett. 11, 1927 (2020). https://doi.org/10.1021/acs.jpclett.9b03829

    Article  Google Scholar 

  28. H.H. Heikens, C.F. van Bruggen, C.J. Haas, Phys. Chem. Sol. 39, 833 (1978). https://doi.org/10.1016/0022-3697(78)90141-5

    Article  ADS  Google Scholar 

  29. G.A. Petrakovskii, S.S. Aplesnin et al., Phys. Sol. St. 33, 406 (1991)

    Google Scholar 

  30. S.S. Aplesnin, G.A. Petrakovskii et al., Sol. St. Commun. 129, 195 (2004). https://doi.org/10.1016/j.ssc.2003.09.028

    Article  ADS  Google Scholar 

  31. S.S. Aplesnin, A.M. Kharkov et al., Bull. Rus. Acad. Sci. Phys. 77, 1252 (2013). https://doi.org/10.3103/S1062873813100031

    Article  Google Scholar 

  32. L.V. Udod, S.S. Aplesnin et al., J. Alloys Compd. 804, 281 (2019). https://doi.org/10.1016/j.jallcom.2019.07.020

    Article  Google Scholar 

  33. S.S. Aplesnin, M.N. Sitnikov et al., JMMM. 513, 167104 (2020). https://doi.org/10.1016/j.jmmm.2020.167104

    Article  Google Scholar 

  34. S.S. Aplesnin, O.B. Romanova et al., Phys. Sol. St. 57, 886 (2015). https://doi.org/10.1134/S1063783415050029

    Article  ADS  Google Scholar 

  35. I.Y. Korenblit, E.F. Shender, Sov. Phys. Usp. 32, 139 (1989). https://doi.org/10.3367/UFNr.0157.198902b.0267

    Article  ADS  Google Scholar 

  36. S.S. Aplesnin, L.V. Udod et al., Mater. Res. Exp. 5, 115202 (2018). https://doi.org/10.1088/2053-1591/aaddd9

    Article  Google Scholar 

  37. S.K. Kor, R.R. Yadav, J. Phys. Soc. Jpn. 55, 207 (1986). https://doi.org/10.1143/JPSJ.55.207

    Article  ADS  Google Scholar 

  38. I. Jarrige, H. Yamaoka et al., Phys. Rev. B 87, 115107 (2013). https://doi.org/10.1103/PhysRevB.87.115107

    Article  ADS  Google Scholar 

  39. N.F. Mott, E.F. Davis, Electronic Processes in Non-Crystalline Materials (Oxford, N. Y., 1971)

    Google Scholar 

  40. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Science, Moscow, 1979)

    Google Scholar 

  41. B.I. Shklovskii, A.L. Efros, Sov. Phys. Usp. 18, 845 (1975). https://doi.org/10.1070/PU1975v018n11ABEH005233

    Article  ADS  Google Scholar 

  42. Yu.M. Galperin, V.L. Gurevich, V.I. Kozub, Sov. Phys. Usp. 22, 352 (1979). https://doi.org/10.1070/PU1979v022n05ABEH005499

    Article  ADS  Google Scholar 

  43. S.S. Aplesnin, O.B. Romanova et al., Phys. Sol. St. 58, 19 (2016). https://doi.org/10.1134/S1063783416010029

    Article  ADS  Google Scholar 

  44. S.S. Aplesnin, M.N. Sitnikov et al., Phys. Stat. Sol. B 256, 1900043 (2019). https://doi.org/10.1002/pssb.201900043

    Article  ADS  Google Scholar 

  45. S.S. Aplesnin, A.M. Kharkov, GYu. Filipson, Phys. Stat. Sol. B 257, 1900637 (2020). https://doi.org/10.1002/pssb.201900637

    Article  ADS  Google Scholar 

  46. G. Weinreich, Phys. Rev. 107, 317 (1957). https://doi.org/10.1103/PhysRev.107.317.2

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Foundation for Basic Research and the Belarussian Republic Foundation for Basic Research (Project No. 20-52-00005). The investigation of microstructural properties of the samples was carried out using equipment’s (SEM and TEM) the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center «Krasnoyarsk Science Center SB RAS». The authors are grateful to A.V. Shabanov, senior researcher of the Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, for the scanning electron microscopy investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Kharkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aplesnin, S., Sitnikov, M., Romanova, O. et al. Electrosound and asymmetry of the I‒V characteristic induced by ultrasound in the RexMn1−xS (Re = Tm, Yb). Eur. Phys. J. Plus 137, 226 (2022). https://doi.org/10.1140/epjp/s13360-022-02432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02432-0

Navigation