Skip to main content
Log in

Ultrasonic evidence of temperatures characteristic of relaxors in PbFe2/3W1/3O3–PbTiO3 solid solutions near the morphotropic phase boundary

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present an ultrasonic study of relaxor-based solid solution (1−x) PbFe2/3W1/3O3x PbTiO3 (0.25 ≤ x ≤ 0.35) located within the morphotropic phase boundary (MPB). The longitudinal ultrasonic wave velocity and attenuation have been measured by the ultrasonic pulse-echo technique at a frequency of 10 MHz in a wide temperature range from 200 to 800 K. Attenuation peaks have been observed at characteristic temperatures, namely, at Burns temperature TB and the additional distinctive temperature T*. To explain the experimental results, we consider a modified polar nanoregions (PNRs) model taking into account fluctuation corrections of ultrasonic wave velocity and attenuation in the vicinity of both TB and T*. The obtained results confirm the dynamic nature of MPB effects which determine the physical properties of relaxor-based solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhang S, Li F (2012) High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J Appl Phys 111:031301–1–31350. https://doi.org/10.1063/1.3679521

    Article  CAS  Google Scholar 

  2. Zhang S, Li F, Luo J, Sahul R (2013) Relaxor-PbTiO3 single crystals for various applications. IEEE Trans Ultrason Ferroelectr Freq Control 60:1572–1580. https://doi.org/10.1109/TUFFC.2013.2737

    Article  Google Scholar 

  3. Choi SW, Shrout TR, Jang SJ, Bhalla AS (1989a) Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics 100:29–38. https://doi.org/10.1080/00150198908007897

    Article  CAS  Google Scholar 

  4. Kuwata J, Uchino K, Nomura S (1981) Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics 37:579–582. https://doi.org/10.1080/00150198108223490

    Article  CAS  Google Scholar 

  5. Kuwata J, Uchino K, Nomura SJ (1982) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3–0.09PbTiO3 single crystals. Jpn J Appl Phys 21:1298–1302. https://doi.org/10.1143/JJAP.21.1298

    Article  CAS  Google Scholar 

  6. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  7. Choi SW, Shrout TR, Jang SJ, Bhalla AS (1989b) Morphotropic phase boundary in Pb (Mg1/3Nb2/3) O3-PbTiO3 system. Mater Lett 8:253–255. https://doi.org/10.1016/0167-577X(89)90115-8

    Article  CAS  Google Scholar 

  8. Shrout TR, Chang ZP, Kim N, Markgraf S (1990) Dielectric behavior of single crystals near the (1–x) Pb(Mg1/3Nb2/3)O3-(x) PbTiO3 morphotropic phase boundary. Ferroelectrics Lett 12:63–69. https://doi.org/10.1080/07315179008201118

    Article  CAS  Google Scholar 

  9. Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J Appl. Phys 82:1804–1811. https://doi.org/10.1063/1.365983

    Article  CAS  Google Scholar 

  10. Zhang R, Jang B, Cao W (2003) Single-domain properties of 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals under electric field bias. Appl Phys Lett 82:787–789. https://doi.org/10.1063/1.1541937

    Article  CAS  Google Scholar 

  11. Luo H, Xu G, Xu H, Yin Z (2001) Third ferroelectric phase in PMNT single crystals near the morphotropic phase boundary composition. Phys Rev Rapid Comm 64:020102–1–20103. https://doi.org/10.1103/PhysRevB.64.020102

    Article  CAS  Google Scholar 

  12. Cox DE, Noheda B, Shirane G, Uesu Y, Fujishiro K, Yamada YY (2001) Universal phase diagram for high-piezoelectric perovskite systems. Appl Phys Lett 79:400–402. https://doi.org/10.1063/1.1384475

    Article  CAS  Google Scholar 

  13. La-Orauttapong D, Noheda B, Ye Z-G, Gering PM, Tolouse J, Cox DE, Shirane G (2002) Phase diagram of the relaxor ferroelectric (1–x)Pb(Zn1/3 Nb2/3)O3xPbTiO3. Phys Rev B 65:144101–1–144107. https://doi.org/10.1103/PhysRevB.65.144101

    Article  CAS  Google Scholar 

  14. Bertram R, Reck G, Uecker R (2003) Growth and correlation between composition and structure of (1–x)Pb(Zn1/3Nb2/3)O3xPbTiO3 crystals near the morphotropic phase boundary. J Crystal Growth 253:212–220. https://doi.org/10.1016/S0022-0248(03)00972-2

    Article  CAS  Google Scholar 

  15. Choi SW, Shrout TR, Jang SJ, Bhalla AS (1989c) Morphotropic phase boundary in Pb (Mg1/3 Nb2/3) O3-PbTiO3 system. Mater Lett 8:253–255. https://doi.org/10.1016/0167-577X(89)90115-8

    Article  CAS  Google Scholar 

  16. Khachaturyan AG, Shapiro SM, Semenovskaya S (1991) Adaptive phase formation in martensitic transformation. Phys Rev B 43:10832–10843. https://doi.org/10.1103/PhysRevB.43.10832

    Article  CAS  Google Scholar 

  17. Jin YM, Wang YU, Khachaturyan AG (2003) Adaptive ferroelectric states in systems with low domain wall energy: tetragonal microdomains. J Appl Phys 94:3629–3640. https://doi.org/10.1063/1.1599632

    Article  CAS  Google Scholar 

  18. Vieland D (2000) Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3 BII2/3)O3–PbTiO3 Crystals. J Appl Phys 88:4794–4805. https://doi.org/10.1063/1.1289789

    Article  Google Scholar 

  19. Wang YU (2006) Three intrinsic relationships of lattice parameters between intermediate monoclinic MC and tetragonal phases in ferroelectric Pb[(Mg1/3Nb2/3)1−xTix]O3 and Pb[(Zn1/3 Nb2/3)1−xTix]O3 near morphotropic phase boundaries. Phys Rev B 73:014113–1–14213. https://doi.org/10.1103/PhysRevB.73.014113

    Article  CAS  Google Scholar 

  20. Schonau KA, Schmitt LA, Knapp M, Fuess H, Eichel R-A, Kungl H, Hoffmann MJ (2007) Nanodomain structure of Pb[Zr1−xTix]O3 at its morphotropic phase boundary: investigations from local to average structure. Phys Rev B 75:184117–1–184210. https://doi.org/10.1103/PhysRevB.75.184117

    Article  CAS  Google Scholar 

  21. Woodward DI, Knudsen J, Reaney IM (2005) Review of crystal and domain structures in the PbZrxTi1−x O3 solid solution. Phys Rev B 72:104110–1–104120. https://doi.org/10.1103/PhysRevB.72.104110

    Article  CAS  Google Scholar 

  22. Cao H, Stock C, Xu G, Gehring PM, Li J, Viehland D (2008) Dynamic origin of the morphotropic phase boundary: soft modes and phase instability in 0.68Pb(Mg1/3Nb2/3O3)−0.32PbTiO3. Phys Rev B 78:104103-1–104111. https://doi.org/10.1103/PhysRevB.78.104103

    Article  CAS  Google Scholar 

  23. Smolenskii GA, Bokov VA, Isupov VA, Krainik NN, Pasynkov RE, Sokolov AI (1984) Ferroelectrics and related materials. Gordon and Breach Science Publishers, New York

    Google Scholar 

  24. Bokov A, Ye Z-G (2006) Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41:31–62. https://doi.org/10.1007/s10853-005-5915-7

    Article  CAS  Google Scholar 

  25. Burns G, Scott BA (1973) Dirty displacive ferroelectrics. Solid State Commun 13:417–423. https://doi.org/10.1016/0038-1098(73)90621-2

    Article  CAS  Google Scholar 

  26. Burns G, Dacol FH (1983a) Glassy polarization behavior in ferroelectric compounds Pb(Mg1/3 Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3. Solid State Commun 48:853–856. https://doi.org/10.1016/0038-1098(83)90132-1

    Article  CAS  Google Scholar 

  27. Burns G, Dacol FH (1983b) Crystalline ferroelectrics with glassy polarization behavior. Phys Rev B 28:2527–2530. https://doi.org/10.1103/PhysRevB.28.2527

    Article  CAS  Google Scholar 

  28. Dkhil B, Gemeiner P, Al-Barakaty A, Bellaiche L, Dul’kin E, Mojaev E, Roth M (2009) Intermediate temperature scale T∗ in lead-based relaxor systems. Phys Rev B 80:041103-1–041109. https://doi.org/10.1103/PhysRevB.80.064103

    Article  CAS  Google Scholar 

  29. Dul’kin E, Roth M, Janolin PE, Dkhil B (2006) Acoustic emission study of phase transitions and polar nanoregions in relaxor-based systems: application to the PbZn1/3Nb2/3O3 family of single crystals. Phys Rev B 73:012102-1–012106. https://doi.org/10.1103/PhysRevB.73.012102

    Article  CAS  Google Scholar 

  30. Nabereznov A, Vakhrushev S, Donner B, Strauch D, Modden H (1999) Inelastic neutron scattering study of the relaxor ferroelectric PbMg1/3Nb2/3O3 at high temperatures. Eur Phys J B 11:13–20. https://doi.org/10.1007/s100510050912

    Article  Google Scholar 

  31. Hirota K, Ye ZG, Wakimoto S, Gehring PM, Shirane G (2002) Neutron diffuse scattering from polar nanoregions in the relaxor Pb(Mg1/3Nb2/3)O3. Phys Rev B 65:104105-1–104112. https://doi.org/10.1103/PhysRevB.65.104105

    Article  CAS  Google Scholar 

  32. Xu G, Shirane G, Copley JRD, Gehring PM (2004) Neutron elastic diffuse scattering study of Pb(Mg1/3Nb2/3)O3. Phys Rev B 69:064112-1–064118. https://doi.org/10.1103/PhysRevB.69.064112

    Article  CAS  Google Scholar 

  33. Xu G, Wen J, Stock C, Gehring PM (2008) Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat Mater 7:562–566. https://doi.org/10.1038/nmat2196

    Article  CAS  Google Scholar 

  34. Li F, Zhang S, Yang T, Xu Z, Zhang N, Liu G, Wang J, Cheng Z, Ye Z-G, Luo J, Shrout TR, Chen LQ (2016) The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat Commun 7(13807):1–9. https://doi.org/10.1038/ncomms13807

    Article  CAS  Google Scholar 

  35. Tsukada S, Terado Y, Moriyoshi C, Kuroiwa Y, Kojima S (2010) Interpretation of Tm and T* in relaxor ferroelectric 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3. IEEE Trans Ultrason Ferroelectr Freq Control 57:2159–2164. https://doi.org/10.1109/TUFFC.2010.1673

    Article  Google Scholar 

  36. Smirnova E, Sotnikov A, Ktitorov S, Zaitseva N, Schmidt H, Weihnacht M (2014) Acoustic evidence of distinctive temperatures in relaxor-multiferroics. J Appl Phys 115:054101-1–1054107. https://doi.org/10.1063/1.4863795

    Article  CAS  Google Scholar 

  37. Smirnova E, Smirnov S, Sotnikov A, Shevelko M, Schmidt H, Weihnacht M (2014) High temperature acoustic anomalies in PMN-PSN solid solution. Ferroelectrics 469:67–72. https://doi.org/10.1080/00150193.2014.948779

    Article  CAS  Google Scholar 

  38. Smirnova E, Sotnikov A, Zaitseva N, Schmidt H (2018) Acoustic anomalies in SrTiO3-BiFeO3 solid solutions. Phys Solid State 60:108–114. https://doi.org/10.1134/S1063783418010249

    Article  CAS  Google Scholar 

  39. Feng L, Ye Z-G (2002) Phase diagram and phase transitions in the relaxor ferroelectric Pb(Fe2/3W1/3)O3-PbTiO3 system. J Sol State Chem 163:484–490. https://doi.org/10.1006/jssc.2001.9433

    Article  CAS  Google Scholar 

  40. Swartz SL, Shrout TR (1982) Fabrication of perovskite lead magnesium niobate. Mater Res Bull 17:1245–1250. https://doi.org/10.1016/0025-5408(82)90159-3

    Article  CAS  Google Scholar 

  41. RITEC, INC., RAM-5000 Computer Controlled Ultrasonic System Specifications. http://www.ritecinc.com/docs/RAM-5000_Info.pdf

  42. Williams J, Lamb J (1958) On the measurement of ultrasonic velocity in solids. J Acoust Soc Amer 30:308–313

    Article  Google Scholar 

  43. Okazaki K (1969) Ceramic engineering for dielectrics, Gakkensha, Tokio

  44. Setter N, Cross LE (1980) The contribution of structural disorder to diffuse phase transitions in ferroelectrics. J Mater Sci 15:2478–2482. https://doi.org/10.1007/BF00550750

    Article  CAS  Google Scholar 

  45. Feng L, Guo H, Ye Z-G (2007) Magnetic ordering in relaxor ferroelectric (1–x) Pb(Fe2/3W1/3) O3–x PbTiO3 single crystals. J Mater Res 22:2016–2024. https://doi.org/10.1557/JMR.2007.0265

    Article  CAS  Google Scholar 

  46. FullProf Suite. A set of crystallographic programs for rietveld analysis of neutron or X-ray powder diffraction data. https://www.ill.eu/sites/fullprof/php/downloads.html and pseudo-Voigt profile function

  47. Zaitseva NV, Naberezhnov AA, Smirnova EP (2021) Two-phase character of the crystal structure of (1-x)PbFe2/3W1/3O3xPbTiO3 (x = 0.25, 0.3, 0.35) solid solutions at room temperature” (in Russian), Z Tech Phys 91: 72–75. https://doi.org/10.21883/JTF.2021.01.50275.158-20. [English version will be available in early 2021]

  48. Pearson WB (1958) A Handbook of lattice spacing and structures of metals and alloys. Pergamon Press, London

    Book  Google Scholar 

  49. Bokov AA, Ye ZG (2020) 1000 at 1000: relaxor ferroelectrics undergoing accelerated growth. J Mater Sci. https://doi.org/10.1007/s10853-020-05098-0

    Article  Google Scholar 

  50. Papadakis EP (1976) Physical acoustics XII. Academic Press, New York

    Google Scholar 

  51. Smolenskii GA, Yushin NK, Smirnov SI, Dorogovtsev SN (1987) Behavior of lead magnesium niobate crystal in the region of phase coexistence. Dokl Akad Nauk SSSR 294(6):1366–1368

    CAS  Google Scholar 

  52. Kojima S, Ahart M, Sivasubramanian V, Bokov AA, Ye ZG (2012) Precursor dynamics of Pb(B1/2B′1/2)O3-type relaxor ferroelectrics studied by broadband micro-brillouin scattering. J Adv Dielectr 2:1241004-1–1241028. https://doi.org/10.1142/S2010135X12410044

    Article  CAS  Google Scholar 

  53. Samara GA (2003) The relaxational properties of compositionally disordered ABO3 perovskites. J Phys Condens Matter 15(9):R367–R411. https://doi.org/10.1088/0953-8984/15/9/202

    Article  CAS  Google Scholar 

  54. Smirnova EP, Sotnikov AV, Kvyatkovskii OE, Weihnacht M, Lemanov VV (2007) Phase evolution in SrTiO3-PbZrO3 solid solution. J Appl Phys 101:084117-1–084125. https://doi.org/10.1063/1.2721400

    Article  CAS  Google Scholar 

  55. Dul’kin E, Kojima S, Roth M (2011) Dielectric maximum temperature non-monotonic behavior in unaxial Sr0.75 Ba0.25 Nb2O6 relaxor seen via acoustic emission. J Appl Phys 110:044106-1–044110. https://doi.org/10.1063/1.3622670

    Article  CAS  Google Scholar 

  56. Dul’kin E (2014) On the question about the burns temperature in KTa1−xNbxO3. Ferroelectrics 467:1–5. https://doi.org/10.1080/00150193.2014.932139

    Article  CAS  Google Scholar 

  57. Roth M, Mojaev E, Dul’kin E, Gemeiner P, Dkhil B (2007) Phase transition at a nanometer scale detected by acoustic emission within the cubic phase Pb(Zn1/3Nb2/3)O3xPbTiO3 relaxor ferroelectrics. Phys Rev Lett 98:265701-1–265705. https://doi.org/10.1103/PhysRevLett.98.265701

    Article  CAS  Google Scholar 

  58. Gehring PM, Hiraka H, Stock C, Lee SH, Chen W, Ye ZG, Vakhrushev SB, Chowdhuri Z (2009) Reassessment of the burns temperature and its relationship to the diffuse scattering, lattice dynamics, and thermal expansion in relaxor Pb(Mg1/3Nb2/3)O3. Phys Rev B 79:224109/1–224109/14. https://doi.org/10.1103/PhysRevB.79.224109

    Article  CAS  Google Scholar 

  59. Dul’kin E, Mojaev E, Roth M, Kamba S, Vilarinho PM (2008) Burns, néel, and structural phase transitions in multiferoic Pb Fe2/3W1/3 O3–x PbTiO3 detected by an acoustic emission. J Appl Phys 103:083542-1–083547. https://doi.org/10.1063/1.2907969

    Article  CAS  Google Scholar 

  60. Read TA, Wert CA, Metzger M (1974) Methods of experimental physics 6A. Academic, New York

    Google Scholar 

  61. Carpenter MA, Bryson JFJ, Catal G, Zhang SJ, Donnelly NJ (2012) Elastic and anelastic relaxations in the relaxor ferroelectric PbMg1/3 Nb2/3 O3:II. Strain–order parameter coupling and dynamic softening mechanisms. J Phys Condens Matter 24:045902-1–045914. https://doi.org/10.1088/0953-8984/24/4/045902

    Article  CAS  Google Scholar 

  62. Tennakoon S, Gladden J, Mookherjee M, Besara T, Siegrist T (2017) Temperature-dependent elasticity of Pb[(Mg0.33 Nb0.67)1-xTix]O3. Phys Rev B 96:134108-1–134117. https://doi.org/10.1103/PhysRevB.96.134108

    Article  Google Scholar 

  63. Li-Li Z, Yi-Neng H (2020) Theory of relaxor-ferroelectricity. Sci Rep 10:5060-1–5078. https://doi.org/10.1038/s41598-020-61911-5

    Article  CAS  Google Scholar 

  64. Levanyuk AP (1966) Contribution to a phenomenogical theory of sound absorbtion near second order phase transition points. Sov Phy JETP 22:901–906

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Smirnova.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, E., Sotnikov, A., Shevelko, M. et al. Ultrasonic evidence of temperatures characteristic of relaxors in PbFe2/3W1/3O3–PbTiO3 solid solutions near the morphotropic phase boundary. J Mater Sci 56, 4753–4762 (2021). https://doi.org/10.1007/s10853-020-05613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05613-3

Navigation