Skip to main content
Log in

Charge fluctuation induced solitary wave anomalous damping in collisionless dusty plasmas: effect of trapped-nonthermal ions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The charge fluctuation induced solitary wave anomalous damping in a charge varying dusty plasma with ions following a Cairns–Gurevich distribution is investigated. To examine a such phenomenon, the exact Cairns–Gurevich ion charging current and the associated dust charge frequency are derived here for the first time. In addition, the appropriate modified damped Korteweg–de Vries (mdK–dV) equation, in which the anomalous (collisionless) damping term due solely to the dust charge variation, is established. Our results show that the damping term is sensibly affected by the presence of trapped-nonthermal ions. In particular, we have shown that this anomalous damping becomes stronger as the ions evolve far away from their Maxwellian trapping. Finally, our numerical investigation is extended to highlight the effect of the anomalous damping on dust-acoustic waves profile. We have found that the strength of dissipation becomes significant and may predominate over that of dispersion as the nonthermal character of trapped ions increases. Our theoretical investigation should be useful in further experimental and theoretical studies in space and laboratory dusty plasma systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Verheest, Waves in Dusty Space Plasmas (Kluwer, Dordrecht, 2000)

    Book  Google Scholar 

  2. P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, 2002)

    Book  Google Scholar 

  3. J. Winter, Phys. Plasmas 7, 3862 (2000)

    Article  ADS  Google Scholar 

  4. D.A. Mendis, M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994)

    Article  ADS  Google Scholar 

  5. N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Space Sci. 38, 543 (1990)

    Article  ADS  Google Scholar 

  6. S. Ghosh, Contrib. Plasma Phys. 48, 569 (2008)

    Article  ADS  Google Scholar 

  7. S. Ali, A.A. Abid, J. Du, A.A. Mamun, Contrib. Plasma Phys. 58, 976 (2018)

    Article  ADS  Google Scholar 

  8. M. Ahmed, Z. Ahmed, M. Farooq, A. Gul, Contrib. Plasma Phys. 59, 367 (2019)

    Article  ADS  Google Scholar 

  9. W.F. El-Taibany, R.M. Taha, Contrib. Plasma Phys. 59, e201800072 (2019)

    Article  ADS  Google Scholar 

  10. Z. Ehsan, M.M. Abbasi, S. Ghosh, M. Khan, M. Ali, Contrib. Plasma Phys. 60, e202000030 (2020)

    Article  Google Scholar 

  11. A. Fodil, S. Younsi, R. Amour, Eur. Phys. J. Plus 135, 389 (2020)

    Article  Google Scholar 

  12. S. Mayout, M. Benzekka, R. Amour, Contrib. Plasma Phys. (2021). https://doi.org/10.1002/ctpp.202000157

    Article  Google Scholar 

  13. R. Bostrom, IEEE Trans. Plasma Sci. 20, 756 (1992)

    Article  ADS  Google Scholar 

  14. P.O. Dovner, A.I. Eriksson, R. Bostrom, B. Holback, Geophys. Res. Lett. 21, 1827 (1994)

    Article  ADS  Google Scholar 

  15. R.A. Cairns, A.A. Mamun, R. Bingham, R. Bostrom, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Geophys. Res. Lett. 22, 2709 (1995)

    Article  ADS  Google Scholar 

  16. A.A. Mamun, Phys. Rev. E 55, 1852 (1997)

    Article  ADS  Google Scholar 

  17. S. Maharaj, S. Pillay, R. Bharuthram, R. Reddy, S. Singh, G. Lakhina, J. Plasma Phys. 72, 43 (2006)

    Article  ADS  Google Scholar 

  18. M. Tribeche, R. Amour, Phys. Plasmas 14, 103707 (2007)

    Article  ADS  Google Scholar 

  19. M. Tribeche, S. Mayout, R. Amour, Phys. Plasmas 16, 043706 (2009)

    Article  ADS  Google Scholar 

  20. F. Verheest, M.A. Hellberg, Phys. Plasmas 17, 102312 (2010)

    Article  ADS  Google Scholar 

  21. N. Arab, R. Amour, M. Bacha, Eur. Phys. J. D 73, 121 (2019)

    Article  ADS  Google Scholar 

  22. H. Abbasi, H.P. Hakimi, Plasma Phys. Contr. Fusion 50, 095007 (2008)

    Article  ADS  Google Scholar 

  23. H. Alinejad, Astrophys. Space Sci. 325, 209 (2010)

    Article  ADS  Google Scholar 

  24. M. Tribeche, L. Djebarni, H. Schamel, Phys. Lett. A 376, 3164 (2012)

    Article  ADS  Google Scholar 

  25. D. Bara, M. Djebli, D. Benaceur-Domaz, Laser and Particle Beams 32, 391 (2014)

    Article  ADS  Google Scholar 

  26. I. Hadjaz, M. Tribeche, Astrophys. Space Sci. 351, 591 (2014)

    Article  ADS  Google Scholar 

  27. S.K. El-Labany, W.F. El-Taibany, N.A. Zedan, Phys. Plasmas 24, 112118 (2017)

    Article  ADS  Google Scholar 

  28. M. Ouazene, R. Amour, Astrophys. Space Sci. 364, 20 (2019)

    Article  ADS  Google Scholar 

  29. N. Arab, R. Amour, M. Benzekka, Eur. Phys. J. Plus 135, 872 (2020). https://doi.org/10.1140/epjp/s13360-020-00892-w

    Article  Google Scholar 

  30. N. Arab, R. Amour, T.H. Zerguini, Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1876280

    Article  Google Scholar 

  31. S. Ghosh, R. Bharuthram, M. Khan, M.R. Gupta, Phys. Plasmas 11, 3602 (2004)

    Article  ADS  Google Scholar 

  32. S. Ghosh, Phys. Plasmas 12, 094504 (2005)

    Article  ADS  Google Scholar 

  33. S. Ghosh, R. Bharuthram, Phys. Plasmas 13, 112305 (2006)

    Article  ADS  Google Scholar 

  34. S. Younsi, M. Tribeche, Phys. Plasmas 17, 043705 (2010)

    Article  ADS  Google Scholar 

  35. R. Amour, M. Tribeche, Phys. Plasmas 21, 123709 (2014)

    Article  ADS  Google Scholar 

  36. A.V. Gurevich, Sov. Phys. JETP 26, 575 (1968)

    ADS  Google Scholar 

  37. J.E. Allen, Phys. Scr. 45, 497 (1992)

    Article  ADS  Google Scholar 

  38. V.E. Fortova, A.V. Ivlevb, S.A. Khrapakb, A.G. Khrapaka, G.E. Morfill, Phys. Rep. 421, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  39. C.K. Goertz, L. Shan, O. Havnes, Geophys. Res. Lett. 15, 84 (1988). https://doi.org/10.1029/GL015i001p00084

    Article  ADS  Google Scholar 

  40. A.A. Mamun, P.K. Shukla, J. Plasma Phys. 77, 437 (2011)

    Article  ADS  Google Scholar 

  41. M. Benzekka, M. Tribeche, Astrophys. Space Sci. 338, 338 (2012)

    Article  Google Scholar 

  42. Y. Futaana, S. Machida, Y. Saito, A. Matsuoka, H. Hayakawa, J. Geophys. Res. 108, 1025 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Contract No. B00L02UN160420180008. The constructive suggestions of the anonymous referee are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Amour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabrina, F., Slimane, K., Amour, R. et al. Charge fluctuation induced solitary wave anomalous damping in collisionless dusty plasmas: effect of trapped-nonthermal ions. Eur. Phys. J. Plus 137, 55 (2022). https://doi.org/10.1140/epjp/s13360-021-02165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02165-6

Navigation