Skip to main content
Log in

Effect of dust charge fluctuations on dust acoustic structures in magnetized dusty plasma containing nonextensive electrons and two-temperature isothermal ions

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Effect of dust electrical charge fluctuations on the nature of dust acoustic solitary waves (DASWs) in a four-species magnetized dusty plasma containing nonextensive electrons and two-temperature isothermal ions has been investigated. In this model, the negative dust electric charge is considered to be proportional to the plasma space potential. The nonlinear Zakharov–Kuznetsov (ZK) and modified Zakharov–Kuznetsov (mZK) equations are derived for DASWs by using the standard reductive perturbation method. The combined effects of electron nonextensivity and dust charge fluctuations on the DASW profile are analyzed. The different ranges of the nonextensive q-parameter are considered. The results show that solitary waves the amplitude and width of which depend sensitively on the nonextensive q-parameter can exist. Due to the electron nonextensivity and dust charge fluctuation rate, our dusty plasma model can admit both positive and negative potential solitons. The results show that the amplitude of the soliton increases with increasing electron nonextensivity, but its width decreases. Increasing the electrical charge fluctuations leads to a decrease in both the amplitude and width of DASWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, London, 2002).

    Book  Google Scholar 

  2. F. Verheest, Waves in Dusty Space Plasmas (Kluwer, Dordrecht, 2000).

    Book  Google Scholar 

  3. Y. N. Nejoh, Phys. Plasmas 4, 2813 (1997).

    Article  ADS  Google Scholar 

  4. E. C. Whipple, T. G. Northrop, and D. A. Mendis, Geophys. Res. Lett. 90, 7405 (1985).

    Article  Google Scholar 

  5. C. K. Goertz, Rev. Geophys. 27, 271 (1989).

    Article  ADS  Google Scholar 

  6. S. I. Popel, S. N. Andreev, A. A. Gisko, A. P. Golub’, and T. V. Losseva, Plasma Phys. Rep. 30, 284 (2004).

    Article  ADS  Google Scholar 

  7. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 38, 729 (2012).

    Article  ADS  Google Scholar 

  8. S. Gh. Dezfully and D. Dorranian, Contrib. Plasma Phys. 53, 564 (2013).

    Article  ADS  Google Scholar 

  9. D. Dorranian and A. Sabetkar, Phys. Plasmas 19, 013702 (2012).

    Article  ADS  Google Scholar 

  10. A. Sabetkar and D. Dorranian, J. Plasma Phys. 80, 565 (2014).

    Article  ADS  Google Scholar 

  11. M. M. Lin and W. S. Duan, Chaos Solitons Fractals 33, 1189 (2007).

    Article  ADS  Google Scholar 

  12. S. I. Popel, M. Y. Yu, and V. N. Tsytovich, Phys. Plasmas 3, 4313 (1996).

    Article  ADS  Google Scholar 

  13. S. I. Popel, A. P. Golub’, T. V. Losseva, A. V. Ivlev, S. A. Khrapak, and G. Morfill, Phys. Rev. E 67, 056402 (2003).

    Article  ADS  Google Scholar 

  14. B. Sahu, Astrophys. Space Sci. 338, 251 (2012).

    Article  ADS  Google Scholar 

  15. A. Renyi, Acta Math. Hung. 6, 285 (1955).

    Article  MathSciNet  Google Scholar 

  16. A. S. Bains, M. Tribeche, N. S. Saini, and T. S. Gill, Phys. Plasmas 18, 104503 (2011).

    Article  ADS  Google Scholar 

  17. M. Tribeche and A. Merriche, Phys. Plasmas 18, 034502 (2011).

    Article  ADS  Google Scholar 

  18. S. Abe, S. Martinez, F. Pennini, and A. Plastino, Phys. Lett. A 281, 126 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Amour and M. Tribeche, Phys. Plasmas 17, 063702 (2010).

    Article  ADS  Google Scholar 

  20. P. Eslami, M. Mottaghizadeh, and H. R. Pakzad, Phys. Plasmas 18, 072305 (2011).

    Article  ADS  Google Scholar 

  21. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1996).

    Article  ADS  Google Scholar 

  22. T. S. Gill, N. S. Saini, and H. Kaur, Chaos Solitons Fractals 28, 1106 (2006).

    Article  ADS  Google Scholar 

  23. M. G. M. Anowar and A. A. Mamun, IEEE Trans. Plasma Sci. 37, 1638 (2009).

    Article  ADS  Google Scholar 

  24. R. L. Mace and M. A. Hellberg, Phys. Plasmas 8, 2649 (2001).

    Article  ADS  Google Scholar 

  25. A. S. Bains, M. Tribeche, and C. S. Ng, Astrophys. Space Sci. 343, 621 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dorranian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araghi, F., Dorranian, D. Effect of dust charge fluctuations on dust acoustic structures in magnetized dusty plasma containing nonextensive electrons and two-temperature isothermal ions. Plasma Phys. Rep. 42, 155–162 (2016). https://doi.org/10.1134/S1063780X1602001X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1602001X

Keywords

Navigation