Skip to main content
Log in

Tuning of a mechanics model for the electrical conductivity of CNT-filled samples assuming extended CNT

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, a mechanics model for the modulus of nanocomposites is progressed for the electrical conductivity of polymer nanocomposites reinforced with carbon nanotubes (CNT), named as PCNT by CNT nets, interphase and tunneling districts. The extended CNT consider the interphase and tunneling areas, and the resistances of CNT, interphase and tunneling districts estimate the conductivity of prolonged CNT. The fine match between forecasts and empirical results for several examples as well as the consistent correlation of conductivity to all factors supports the predictability of the progressive model. The conductivity of nanocomposite systems directly depends on the network size and interphase depth, but the conductivities of CNT and interphase are unproductive. Additionally, low percolation onset and little polymer tunneling resistivity together with the wide and undersized tunnels beneficially improve the nanocomposite’s conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Toozandehjani, K.A. Matori, F. Ostovan, K.R. Jamaludin, A. Amrin, E. Shafiei, The effect of the addition of CNTs on the microstructure, densification and mechanical behavior in Al-CNT-Al 2 O 3 hybrid nanocomposites. JOM 72(6), 2283–2294 (2020)

    Article  ADS  Google Scholar 

  2. M.H. Ghayesh, H. Farokhi, A. Farajpour, A coupled longitudinal-transverse nonlinear NSGT model for CNTs incorporating internal energy loss. Eur. Phys. J. Plus 134, 179 (2019)

    Article  Google Scholar 

  3. H. Berrehal, F. Mabood, O. Makinde, Entropy-optimized radiating water/FCNTs nanofluid boundary-layer flow with convective condition. Eur. Phys. J. Plus 135, 1–21 (2020)

    Google Scholar 

  4. M. Saqib, I. Khan, S. Shafie, Natural convection channel flow of CMC-based CNTs nanofluid. Eur. Phys. J. Plus 133, 549 (2018)

    Article  Google Scholar 

  5. K. Behdinan, R. Moradi-Dastjerdi, B. Safaei, Z. Qin, F. Chu, D. Hui, Graphene and CNT impact on heat transfer response of nanocomposite cylinders. Nanotechnol. Rev. 9, 41–52 (2020)

    Article  Google Scholar 

  6. A.A.P. Khan, G.C. Bazan, B.G. Alhogbi, H.M. Marwani, A. Khan, M. Alam, M.M. Rahman, A.M. Asiri, Nanocomposite cross-linked conjugated polyelectrolyte/MWCNT/poly (pyrrole) for enhanced Mg2+ ion sensing and environmental remediation in real samples. J. Mater. Res. Technol. 9, 9667–9674 (2020)

    Article  Google Scholar 

  7. A.-Y. Jang, S.-H. Lim, D.-H. Kim, H.-D. Yun, G.-C. Lee, S.-Y. Seo, Strain-Detecting properties of hybrid PE and steel fibers reinforced cement composite (Hy-FRCC) with Multi-Walled carbon nanotube (MWCNT) under repeated compression. Res. Phys. 18, 103199 (2020)

    Google Scholar 

  8. E.H. Lee, M.H. Jee, C.S. Kang, D.H. Baik, Preparation and characterization of polyhydroxyamide hybrid nanocomposite films containing MWCNTs and clay as reinforcing materials. Fibers Polym. 20, 832–838 (2019)

    Article  Google Scholar 

  9. M. Mirnezhad, R. Ansari, S. Falahatgar, Quantum effects on the mechanical properties of fine-scale CNTs: an approach based on DFT and molecular mechanics model. Eur. Phys. J. Plus 135, 1–71 (2020)

    Article  Google Scholar 

  10. C.P. Ganea, D. Manaila-Maximean, V. Cîrcu, Dielectric investigations on carbon nanotubes doped polymer dispersed liquid crystal films. Eur. Phys. J. Plus 135, 1–14 (2020)

    Article  Google Scholar 

  11. F. Mehralian, R. Firouz-Abadi, A.V. Moshtagh, Elastic properties of vertically aligned carbon nanotubes: a molecular dynamics study. Eur. Phys. J. Plus 134, 544 (2019)

    Article  Google Scholar 

  12. Y. Zare, K.Y. Rhee, Effects of interphase regions and filler networks on the viscosity of PLA/PEO/carbon nanotubes biosensor. Polym. Compos. 40(10), 4135–4141 (2019)

    Article  Google Scholar 

  13. B. Safaei, N. Ahmed, A. Fattahi, Free vibration analysis of polyethylene/CNT plates. Eur. Phys. J. Plus 134, 271 (2019)

    Article  Google Scholar 

  14. A. Rostami, M.I. Moosavi, High-performance thermoplastic polyurethane nanocomposites induced by hybrid application of functionalized graphene and carbon nanotubes. J. Appl. Polym. Sci. 137, 48520 (2020)

    Article  Google Scholar 

  15. I. Otaegi, N. Aranburu, M. Iturrondobeitia, J. Ibarretxe, G. Guerrica-Echevarría, The effect of the preparation method and the dispersion and aspect ratio of CNTs on the mechanical and electrical properties of bio-based polyamide-4, 10/CNT nanocomposites. Polymers 11, 2059 (2019)

    Article  Google Scholar 

  16. S. Maiti, R. Bera, S.K. Karan, S. Paria, A. De, B.B. Khatua, PVC bead assisted selective dispersion of MWCNT for designing efficient electromagnetic interference shielding PVC/MWCNT nanocomposite with very low percolation threshold. Compos. Part B Eng. 167, 377–386 (2019)

    Article  Google Scholar 

  17. Y. Zare, K.Y. Rhee, The effective conductivity of polymer carbon nanotubes (CNT) nanocomposites. J. Phys. Chem. Solids 131, 15–21 (2019)

    Article  ADS  Google Scholar 

  18. R. Razavi, Y. Zare, K.Y. Rhee, A two-step model for the tunneling conductivity of polymer carbon nanotube nanocomposites assuming the conduction of interphase regions. RSC Adv. 7, 50225–50233 (2017)

    Article  ADS  Google Scholar 

  19. Y. Zare, K.Y. Rhee, Significances of interphase conductivity and tunneling resistance on the conductivity of carbon nanotubes nanocomposites. Polym. Compos. 41, 748–756 (2020)

    Article  Google Scholar 

  20. A. Abdolmaleki, S. Mallakpour, S. Borandeh, Amino acid-functionalized multi-walled carbon nanotubes for improving compatibility with chiral poly (amide-ester-imide) containing l-phenylalanine and l-tyrosine linkages. Appl. Surf. Sci. 287, 117–123 (2013)

    Article  ADS  Google Scholar 

  21. C. Choi, S. Park, H. Choi, Carbon nanotube/polyaniline nanocomposites and their electrorheological characteristics under an applied electric field. Curr. Appl. Phys. 7, 352–355 (2007)

    Article  ADS  Google Scholar 

  22. F. Pourfayaz, A.A. Khodadadi, S.-H. Jafari, Y. Mortazavi, H.A. Khonakdar, Ultra-low electrical and rheological percolation thresholds in PMMA/plasma-functionalized CNTs nanocomposites. Polym. Plast. Technol. Eng. 53(14), 1450–1455 (2014)

    Article  Google Scholar 

  23. J.C. Grunlan, A.R. Mehrabi, M.V. Bannon, J.L. Bahr, Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv. Mater. 16, 150–153 (2004)

    Article  Google Scholar 

  24. Y. Zare, K.Y. Rhee, Accounting the reinforcing efficiency and percolating role of interphase regions in the tensile modulus of polymer/CNT nanocomposites. Eur. Polym. J. 87, 389–397 (2017)

    Article  Google Scholar 

  25. Y. Zare, K.Y. Rhee, Tensile modulus prediction of carbon nanotubes-reinforced nanocomposites by a combined model for dispersion and networking of nanoparticles. J. Mater. Res. Technol. 9, 22–32 (2020)

    Article  Google Scholar 

  26. Y. Zare, K.Y. Rhee, Simulation of Young’s modulus for clay-reinforced nanocomposites assuming mechanical percolation, clay-interphase networks and interfacial linkage. J. Mater. Res. Technol. 9, 12473–12483 (2020)

    Article  Google Scholar 

  27. M. Haghgoo, M. Hassanzadeh-Aghdam, R. Ansari, A comprehensive evaluation of piezoresistive response and percolation behavior of multiscale polymer-based nanocomposites. Compos. Part A Appl. Sci. Manuf. 130, 105735 (2019)

    Article  Google Scholar 

  28. Y. Zare, K.Y. Rhee, Expression of characteristic tunneling distance to control the electrical conductivity of carbon nanotubes-reinforced nanocomposites. J. Mater. Res. Technol. 9, 15996–16005 (2020)

    Article  Google Scholar 

  29. Y. Zare, K.Y. Rhee, A simulation work for the influences of aggregation/agglomeration of clay layers on the tensile properties of nanocomposites. JOM 71(11), 3989–3995 (2019)

    Article  Google Scholar 

  30. P. Zhang, S. Lei, W. Fu, J. Niu, G. Liu, J. Qian, J. Sun, The effects of agglomerate on the piezoresistivity of conductive carbon nanotube/polyvinylidene fluoride composites. Sens. Actuators A 281, 176–184 (2018)

    Article  Google Scholar 

  31. M. Haghgoo, R. Ansari, M. Hassanzadeh-Aghdam, Prediction of electrical conductivity of carbon fiber-carbon nanotube-reinforced polymer hybrid composites. Compos. Part B Eng. 167, 728–735 (2019)

    Article  Google Scholar 

  32. M. Haghgoo, R. Ansari, M.K. Hassanzadeh-Aghdam, The effect of nanoparticle conglomeration on the overall conductivity of nanocomposites. Int. J. Eng. Sci. 157, 103392 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. P.P. Kuzhir, A.G. Paddubskaya, M.V. Shuba, S.A. Maksimenko, A. Celzard, V. Fierro, G. Amaral-Labat, A. Pizzi, G. Valušis, J. Macutkevic, Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/carbon nanotube composites. J. Nanophotonics 6, 061715 (2012)

    Article  ADS  Google Scholar 

  34. Y. Zare, K.Y. Rhee, Development of a conventional model to predict the electrical conductivity of polymer/carbon nanotubes nanocomposites by interphase, waviness and contact effects. Compos. Part A Appl. Sci. Manuf. 100, 305–312 (2017)

    Article  Google Scholar 

  35. C. Feng, L. Jiang, Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos. A Appl. Sci. Manuf. 47, 143–149 (2013)

    Article  Google Scholar 

  36. F. Du, R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, K.I. Winey, Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37, 9048–9055 (2004)

    Article  ADS  Google Scholar 

  37. C. Li, E.T. Thostenson, T.-W. Chou, Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl. Phys. Lett. 91, 223114 (2007)

    Article  ADS  Google Scholar 

  38. M. Haghgoo, R. Ansari, M. Hassanzadeh-Aghdam, M. Nankali, Analytical formulation for electrical conductivity and percolation threshold of epoxy multiscale nanocomposites reinforced with chopped carbon fibers and wavy carbon nanotubes considering tunneling resistivity. Compos. Part A Appl. Sci. Manuf. 126, 105616 (2019)

    Article  Google Scholar 

  39. Y. Zare, K.Y. Rhee, A simulation study for tunneling conductivity of carbon nanotubes (CNT) reinforced nanocomposites by the coefficient of conductivity transferring amongst nanoparticles and polymer medium. Res. Phys. 17, 103091 (2020)

    Google Scholar 

  40. T. Takeda, Y. Shindo, Y. Kuronuma, F. Narita, Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer 52, 3852–3856 (2011)

    Article  Google Scholar 

  41. N. Ouali, J. Cavaillé, J. Perez, Elastic, viscoelastic and plastic behavior of multiphase polymer blends. Plast. Rubber Compos. Process. Appl. (UK) 16, 55–60 (1991)

    Google Scholar 

  42. M. Martin-Gallego, M. Bernal, M. Hernandez, R. Verdejo, M. Lopez-Manchado, Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur. Polym. J. 49, 1347–1353 (2013)

    Article  Google Scholar 

  43. H. Shin, S. Yang, J. Choi, S. Chang, M. Cho, Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: a multiscale approach. Chem. Phys. Lett. 635, 80–85 (2015)

    Article  ADS  Google Scholar 

  44. Y. Zare, K.Y. Rhee, Development and modification of conventional Ouali model for tensile modulus of polymer/carbon nanotubes nanocomposites assuming the roles of dispersed and networked nanoparticles and surrounding interphases. J. Colloid Interface Sci. 506, 283–290 (2017)

    Article  ADS  Google Scholar 

  45. X.L. Ji, K.J. Jiao, W. Jiang, B.Z. Jiang, Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 42, 983 (2002)

    Article  Google Scholar 

  46. Y. Zare, K.Y. Rhee, S.-J. Park, Modeling the roles of carbon nanotubes and interphase dimensions in the conductivity of nanocomposites. Res. Phys. 15, 102562 (2019)

    Google Scholar 

  47. R. Rafiee, Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites. Compos. Struct. 97, 304–309 (2013)

    Article  Google Scholar 

  48. J. Li, P.C. Ma, W.S. Chow, C.K. To, B.Z. Tang, J.K. Kim, Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Func. Mater. 17, 3207–3215 (2007)

    Article  Google Scholar 

  49. M. Mohiuddin, S.V. Hoa, Estimation of contact resistance and its effect on electrical conductivity of CNT/PEEK composites. Compos. Sci. Technol. 79, 42–48 (2013)

    Article  Google Scholar 

  50. F.H. Gojny, M.H. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, K. Schulte, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47, 2036–2045 (2006)

    Article  Google Scholar 

  51. Y. Mamunya, A. Boudenne, N. Lebovka, L. Ibos, Y. Candau, M. Lisunova, Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos. Sci. Technol. 68, 1981–1988 (2008)

    Article  Google Scholar 

  52. Y.J. Kim, T.S. Shin, H. Do Choi, J.H. Kwon, Y.-C. Chung, H.G. Yoon, Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43, 23–30 (2005)

    Article  Google Scholar 

  53. E. Logakis, P. Pissis, D. Pospiech, A. Korwitz, B. Krause, U. Reuter, P. Pötschke, Low electrical percolation threshold in poly (ethylene terephthalate)/multi-walled carbon nanotube nanocomposites. Eur. Polym. J. 46, 928–936 (2010)

    Article  Google Scholar 

  54. P. Kuzhir, A. Paddubskaya, A. Plyushch, N. Volynets, S. Maksimenko, J. Macutkevic, I. Kranauskaite, J. Banys, E. Ivanov, R. Kotsilkova, Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties. J. Appl. Phys. 114, 164304 (2013)

    Article  ADS  Google Scholar 

  55. Y. Kazemi, A.R. Kakroodi, L.H. Mark, T. Filleter, C.B. Park, Effects of polymer-filler interactions on controlling the conductive network formation in polyamide 6/multi-Walled carbon nanotube composites. Polymer 178, 121684 (2019)

    Article  Google Scholar 

  56. W. Fang, H.W. Jang, S.N. Leung, Evaluation and modelling of electrically conductive polymer nanocomposites with carbon nanotube networks. Compos. B Eng. 83, 184–193 (2015)

    Article  Google Scholar 

  57. R. Ma, G. Mu, H. Zhang, J. Liu, Y. Gao, X. Zhao, L. Zhang, Percolation analysis of the electrical conductive network in a polymer nanocomposite by nanorod functionalization. RSC Adv. 9, 36324–36333 (2019)

    Article  ADS  Google Scholar 

  58. Y. Zare, K.Y. Rhee, Simulation of percolation threshold, tunneling distance, and conductivity for carbon nanotube (CNT)-reinforced nanocomposites assuming effective CNT concentration. Polymers 12, 114 (2020)

    Article  Google Scholar 

  59. W. Bao, S. Meguid, Z. Zhu, G. Weng, Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 111, 093726 (2012)

    Article  ADS  Google Scholar 

  60. N. Ryvkina, I. Tchmutin, J. Vilčáková, M. Pelíšková, P. Sáha, The deformation behavior of conductivity in composites where charge carrier transport is by tunneling: theoretical modeling and experimental results. Synth. Met. 148, 141–146 (2005)

    Article  Google Scholar 

  61. G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A. Danani, P. Ryser, Solution of the tunneling-percolation problem in the nanocomposite regime. Phys. Rev. B 81, 155434 (2010)

    Article  ADS  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong Yop Rhee.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhee, K.Y. Tuning of a mechanics model for the electrical conductivity of CNT-filled samples assuming extended CNT. Eur. Phys. J. Plus 137, 24 (2022). https://doi.org/10.1140/epjp/s13360-021-02070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02070-y

Navigation