Skip to main content
Log in

Geometric effects on the electronic structure of curved nanotubes and curved graphene: the case of the helix, catenary, helicoid, and catenoid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Since electrons in a ballistic regime perceive a carbon nanotube or a graphene layer structure as a continuous medium, we can use the study of the quantum dynamics of one electron constrained to a curve or surface to obtain a qualitative description of the conduction electrons’ behavior. The confinement process of a quantum particle to a curve or surface leads us, in the so-called confining potential formalism, to a geometry-induced potential in the effective Schrödinger equation. With these considerations, this work aims to study in detail the consequences of constraining a quantum particle to a helix, catenary, helicoid, or catenoid, exploring the relations between these curves and surfaces using differential geometry. Initially, we use the variational method to estimate the energy of the particle in its ground state, and thus, we obtain better approximations with the use of the confluent Heun function through numerical calculations. Thus, we conclude that a quantum particle constrained to an infinite helix has its angular momentum quantized due to the geometry of the curve, while in the cases of the catenary, helicoid, and catenoid the particle can be found either in a single bound state or in excited states which constitute a continuous energy band. Additionally, we propose measurements of physical observables capable of discriminating the topologies of the studied surfaces, in the context of topological metrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. H. Terrones, M. Terrones, Curved nanostructured materials. New J. Phys. 5, 126 (2003)

    Article  ADS  Google Scholar 

  2. H. Jensen, H. Koppe, Quantum mechanics with constraints. Ann. Phys. 63, 586 (1971)

    Article  ADS  Google Scholar 

  3. R.C.T. da Costa, Quantum mechanics of a constrained particle. Phys. Rev. A 23, 1982 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  4. R.C.T. da Costa, Constraints in quantum mechanics. Phys. Rev. A 25, 2893 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. P.C. Schuster, R. Jaffe, Quantum mechanics on manifolds embedded in Euclidean space. Ann. Phys. 307, 132 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, S. Longhi, Geometric potential and transport in photonic topological crystals. Phys. Rev. Lett. 104, 150403 (2010)

    Article  ADS  Google Scholar 

  7. J. Onoe, T. Ito, H. Shima, H. Yoshioka, S.I. Kimura, Observation of Riemannian geometric effects on electronic states. Europhys. Lett. 98, 27001 (2012)

    Article  ADS  Google Scholar 

  8. T. Zhang, X. Li, H. Gao, Defects controlled wrinkling and topological design in graphene. J. Mech. Phys. Solids 67, 2 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Santos, S. Fumeron, B. Berche, F. Moraes, Geometric effects in the electronic transport of deformed nanotubes. Nanotechnology 27, 135302 (2016)

    Article  ADS  Google Scholar 

  10. Y.N. Joglekar, A. Saxena, Curvature-induced p-n junctions in bent or folded bilayer graphene sheets. Phys. Rev. B 80, 153405 (2009)

    Article  ADS  Google Scholar 

  11. J.E.G. Silva, J. Furtado, T.M. Santiago, A.C.A. Ramos, D.R. da Costa, Electronic properties of bilayer graphene catenoid bridge. Phys. Lett. A 384, 126458 (2020)

    Article  MathSciNet  Google Scholar 

  12. V. Atanasov, R. Dandoloff, A. Saxena, Geometry-induced charge separation on a Helicoidal Ribbon. Phys. Rev. B 79, 033404 (2009)

    Article  ADS  Google Scholar 

  13. R. Dandoloff, T.T. Truong, Quantum Hall-like effect on strips due to geometry. Phys. Lett. A 325, 233 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. F. dos S Azevedo, J.D.M. de Lima, A. de Pádua Santos, F. Moraes, Optical wormhole from hollow disclinations. Phys. Rev. A 103, 023516 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Gupta, A. Saxena, Negative Gaussian curvature distribution in physical and biophysical systems-curved nanocarbons and ion-channel membrane proteins. J. Appl. Phys. 112, 114316 (2012)

    Article  ADS  Google Scholar 

  16. S. Gupta, A. Saxena, Geometrical interpretation and curvature distribution in nanocarbons. J. Appl. Phys. 109, 074316 (2011)

    Article  ADS  Google Scholar 

  17. S. Gupta, A. Saxena (eds.), The Role of Topology in Materials, Springer Series in Solid-State Sciences, vol. 189 (Springer, Cham, 2018)

    Google Scholar 

  18. M. Gingras, One hundred years of helicene chemistry. Part 1: non-stereoselective syntheses of carbohelicenes. Chem. Soc. Rev. 42, 968 (2013)

    Article  Google Scholar 

  19. J.J. Stoker, Differential Geometry (Wiley Classics Library, New York, 1989)

    MATH  Google Scholar 

  20. D.J. Struik, Lectures on Classical Differential Geometry (Dover, New York, 1988)

    MATH  Google Scholar 

  21. M.P. do Carmo, Differential Geometry of Curves and Surfaces: Revised and Updated, 2nd edn. (Courier Dover Publications, New York, 2016)

    MATH  Google Scholar 

  22. R. Dandoloff, A. Saxena, B. Jensen, Geometry-induced potential on a two-dimensional section of a wormhole: Catenoid. Phys. Rev. A 81, 014102 (2010)

    Article  ADS  Google Scholar 

  23. M.C.R. Ribeiro Jr., M.M. Cunha, C. Filgueiras, E.O. Silva, Quantum particle motion on the surface of a helicoid in the presence of an harmonic oscillator. Phys. Open 5, 100045 (2020)

    Article  Google Scholar 

  24. C.C. Bastos, A.C. Pavão, E.S. Leandro, On the quantum mechanics of a particle constrained to generalized cylinders with application to Möbius strips. J. Math. Chem. 54, 1822 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. L.C.B. da Silva, C.C. Bastos, F.G. Ribeiro, Quantum mechanics of a constrained particle and the problem of prescribed geometry-induced potential. Ann. Phys. 379, 13 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. B.J. Bernard, L.C.L.Y. Voon, Notes on the quantum mechanics of particles constrained to curved surfaces. Eur. J. Phys. 34, 1235 (2013)

    Article  MATH  Google Scholar 

  27. S. Kar, D. Sahdev, B. Bhawal, Scalar waves in a wormhole geometry. Phys. Rev. D 49, 853 (1994)

    Article  ADS  Google Scholar 

  28. M.A. Cirone, K. Rzazewski, W.P. Schleich, F. Straub, J. Wheeler, Quantum anticentrifugal force. Phys. Rev. A 65, 022101 (2001)

    Article  ADS  Google Scholar 

  29. V. Atanasov, R. Dandoloff, Curvature induced quantum potential on deformed surfaces. Phys. Lett. A 371, 118 (2007)

    Article  ADS  Google Scholar 

  30. N. Zettili, Quantum Mechanics: Concepts and Applications (Wiley, West Sussex, 2009)

    Google Scholar 

  31. J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 2017)

    Book  MATH  Google Scholar 

  32. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Elsevier, Burlington, 2007)

    MATH  Google Scholar 

  33. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  34. R.R. Hartmann, Bound states in a hyperbolic asymmetric double-well. J. Math. Phys. 55, 012105 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. R.R. Hartmann, M.E. Portnoi, Two-dimensional Dirac particles in a Pöschl-Teller waveguide. Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  36. A.M. Ishkhanyan, Schrödinger potentials solvable in terms of the confluent Heun functions. Theor. Math. Phys. 188, 980 (2016)

    Article  MATH  Google Scholar 

  37. H. Karayer, D. Demirhan, F. Büyükkılıç, Extension of Nikiforov-Uvarov method for the solution of Heun equation. J. Math. Phys. 56, 063504 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. A. Ronveaux (ed.), Heun’s Differential Equations (Oxford University Press, Oxford, 1995)

    MATH  Google Scholar 

  39. G. Kristensson, Second Order Differential Equations: Special Functions and Their Classification (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  40. A. Ishkhanyan, Schrödinger potentials solvable in terms of the general Heun functions. Ann. Phys. 388, 456 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. C.A. Downing, On a solution of the Schrödinger equation with a hyperbolic double-well potential. J. Math. Phys. 54, 072101 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. R. Boyack, J. Lekner, Confluent Heun functions and separation of variables in spheroidal coordinates. J. Math. Phys. 52, 073517 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. P.P. Fiziev, Novel relations and new properties of confluent Heun’s functions and their derivatives of arbitrary order. J. Phys. A: Math. Theor. 43, 035203 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. S. Dong, Q. Fang, B.J. Falaye, G.H. Sun, C. Yáñez Márquez, S.H. Dong, Exact solutions to solitonic profile mass Schrödinger problem with a modified Pöschl-Teller potential. Modern Phys. Lett. A 31, 1650017 (2016)

    Article  ADS  MATH  Google Scholar 

  45. S. Dong, G.H. Sun, B.J. Falaye, S.H. Dong, Semi-exact solutions to position-dependent mass Schrödinger problem with a class of hyperbolic potential V\({}_{0}\)tanh(ax). Eur. Phys. J. Plus 131, 1 (2016b)

    Article  Google Scholar 

  46. Q. Dong, F. A. Serrano, G. H. Sun, J. Jing, S. H. Dong, Semiexact solutions of the Razavy potential. Adv. High Energy Phys. 2018 (2018)

  47. Q. Dong, A.J.T. Arenas, G.H. Sun, O. Camacho Nieto, S. Femmam, S.H. Dong, Exact solutions of the sine hyperbolic type potential. J. Math. Chem. 57, 1924 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. F.M. Fernández, Wronskian method for bound states. Eur. J. Phys. 32, 723 (2011)

    Article  MATH  Google Scholar 

  49. A.E. Sitnitsky, Exactly solvable Schrödinger equation with double-well potential for hydrogen bond. Chem. Phys. Lett. 676, 169 (2017)

    Article  ADS  Google Scholar 

  50. MAPLE, Maplesoft, A Division of Waterloo Maple Inc. (MAPLE, Waterloo, 2017)

    Google Scholar 

  51. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. S. Gupta, A. Saxena, A topological twist on materials science. MRS Bull. 39, 265 (2014)

    Article  Google Scholar 

  53. I.M. Lifshitz et al., Anomalies of electron characteristics of a metal in the high pressure region. Sov. Phys. JETP 11, 1130 (1960)

    Google Scholar 

  54. M. Vergniory, L. Elcoro, C. Felser, N. Regnault, B.A. Bernevig, Z. Wang, A complete catalogue of high-quality topological materials. Nature 566, 480 (2019)

    Article  ADS  Google Scholar 

  55. L. Ford, A. Vilenkin, A gravitational analogue of the Aharonov-Bohm effect. J. Phys. A: Math. Gen. 14, 2353 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  56. AMdM Carvalho, C. Sátiro, F. Morae, Aharonov-Bohm-like effect for light propagating in nematics with disclinations. Europhys. Lett. 80, 46002 (2007)

    Article  ADS  Google Scholar 

  57. A.M.D.M. Carvalho, C.A. de Lima Ribeiro, F. Moraes, C. Furtado, Holonomy transformations and application in the curved structure of graphene. Eur. Phys. J. Plus 128, 1 (2013)

    Google Scholar 

  58. E. Pereira, F. Moraes, Diffraction of light by topological defects in liquid crystals. Liq. Cryst. 38, 295 (2011)

    Article  Google Scholar 

  59. T. Stegmann, N. Szpak, Current splitting and valley polarization in elastically deformed graphene. 2D Mater 6, 015024 (2018)

    Article  Google Scholar 

  60. Y.L. Wang, H.S. Zong, H. Liu, Y.F. Chen, Geometry-induced quantum Hall effect and Hall viscosity. Phys. Rev. B 102, 155153 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)—Finance Code 001 (F.F.S.F.), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), Grants No. IBPG-0487-1.05/19 (J.D.M.L.), and BIC-1187-1.05/20 (E.G.), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant No. 307687/2017-1 (F.M.). The authors are indebted to L.C.B. da Silva for invaluable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Moraes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, J.D.M., Gomes, E., da Silva Filho, F.F. et al. Geometric effects on the electronic structure of curved nanotubes and curved graphene: the case of the helix, catenary, helicoid, and catenoid. Eur. Phys. J. Plus 136, 551 (2021). https://doi.org/10.1140/epjp/s13360-021-01533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01533-6

Navigation