Skip to main content
Log in

On the quantum mechanics of a particle constrained to generalized cylinders with application to Möbius strips

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The intrinsic geometric approach to quantum mechanics has been applied to study nanostructures, as well as aromaticity and other electronic properties of molecules. Usually strong hypotheses on the geometry are made in order to allow for analytical solutions. We undertake the problem of stability, with respect to smooth deformations, of the spectra obtained under such simplifying hypotheses. In this article we show that symmetries can sometimes be removed by solving the problem of a particle constrained to a right cylinder with an arbitrary smooth cross section considering the effects of intrinsic geometry. The topology of the cross section, rather than its geometry, is shown to play a key role in this context. Our solution is applied to a generalized Möbius strip when the median curve is nearly a circle of diameter sufficiently large compared to the width of the strip. We also provide a systematic method for ordering the quantum states of generalized right cylinders according to their energies and apply this method to order the spectra of Möbius strips whose diameters are much larger than their widths. Finally, for the sake of comparison, our results are used to calculate the \(\uppi \) electron energy spectra of five aromatic molecules (benzene, pyrazine, pyridine, 1,3 diazyne and 1,3,5 triazyne), showing a fair agreement with experimental data and quantum chemistry calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E. Schrödinger, Ann. Phys. 79(4), 13–40 (1926)

    Google Scholar 

  2. E. Schrödinger, Proc. R. Ir. Acad 46(A), 9–16 (1940)

    Google Scholar 

  3. R. da Costa, Phys. Rev. A 23(4), 1982–1987 (1981)

    Article  Google Scholar 

  4. R. da Costa, Phys. Rev. A 25(6), 2893–2899 (1982)

    Article  Google Scholar 

  5. J. Gravesen, M. Willatzen, L. Voon, J. Math. Phys. 46, 012107 (2005)

    Article  Google Scholar 

  6. J. Gravesen, M. Willatzen, Phys. Rev. A 72, 032108 (2005)

    Article  Google Scholar 

  7. C. Filgueiras, F. Moraes, Ann. Phys. 323, 3150–3157 (2008)

    Article  CAS  Google Scholar 

  8. J. Onoe, T. Ito, H. Shima, H. Yoshioka, S. Kimura, Eur. Lett. 98, 27001 (2012)

    Article  Google Scholar 

  9. E. Miliordos, Phys. Rev. A 82, 062118-1–062118-6 (2010)

    Article  Google Scholar 

  10. Z. Li, L. Ram-Mohan, Phys. Rev. B 85, 195438 (2012)

    Article  Google Scholar 

  11. S. Rosa, J. Montero, P. Moreno, J. Venegas, J. Dehesa, J. Math. Chem. 49, 971–994 (2011)

    Article  Google Scholar 

  12. H. Corzo, H. Laguna, R. Sagar, J. Math. Chem. 50, 233–248 (2012)

    Article  CAS  Google Scholar 

  13. F. Halverson, R. Hirt, J. Chem. Phys. 19, 711–717 (1951)

    Article  CAS  Google Scholar 

  14. J. Romand, B. Vodar, Compt. Rend. 233, 930–932 (1951)

    CAS  Google Scholar 

  15. G. Akira, F. Masaaki, I. Mitsuo, J. Phys. Chem. 91(9), 2268–2273 (1987)

    Article  Google Scholar 

  16. S. Lias, J. Bartmess, J. Liebman, J. Holmes, R. Levin, W. Mallard, J. Phys. Chem. Ref. Data 17(suppl 1), 1–861 (1988)

    Google Scholar 

  17. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery, T. Vreven, K. Kudin, J. Burant, J. Millam, S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. Knox, H. Hratchian, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Ayala, K. Morokuma, G. Voth, P. Salvador, J. Dannenberg, V. Zakrzewski, S. Dapprich, A. Daniels, M. Strain, O. Farkas, D. Malick, A. Rabuck, K. Raghavachari, J. Foresman, J. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Martin, D. Fox, T. Keith, M. Al-Laham, C. Peng, A. Nanayakkara, M. Challacombe, P. Gill, B. Johnson, W. Chen, M. Wong, C. Gonzalez, J. Pople, Gaussian 03, Revision C.02 (Gaussian, Inc, Wallingford, 2004)

    Google Scholar 

  18. W. Massey, Tohoku Math. J. 14, 73–79 (1962)

    Article  Google Scholar 

  19. E. Starostin, G. van der Heijden, Nat. Mater. 6, 563–567 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian agencies CNPq and CAPES. We are grateful to F. Moraes for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo S. G. Leandro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, C.C., Pavão, A.C. & Leandro, E.S.G. On the quantum mechanics of a particle constrained to generalized cylinders with application to Möbius strips. J Math Chem 54, 1822–1834 (2016). https://doi.org/10.1007/s10910-016-0652-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0652-5

Keywords

Navigation