Skip to main content
Log in

Influence of temperature on the electrical characteristic parameters and dynamic electro-mechanical behaviour of PZT-5H

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the field of ammunition, piezoelectric ceramics are increasingly used as part of impact fuze systems. It is an urgent problem to improve the low-temperature storage and low-temperature environment adaptability of piezoelectric ceramic power supply. In order to study the dynamic mechanical and electrical response characteristics of PZT-5H at − 40 to 25 °C, the static electrical parameters of PZT-5H at different temperatures were measured, and the Hopkinson bar experiments at different temperatures and impact velocities were carried out by using the self-established low-temperature mechanical and electrical test system. The variation of resistivity and relative permittivity of PZT-5H from − 40 to 25 °C is obtained by experiment, and the relaxation time of PZT-5H is obtained according to Debye’s theory. Combined with the observation of scanning electron microscope (SEM), the influence mechanism of porosity and crack on the electrical output characteristics of piezoelectric ceramics was obtained. The mechanism of the freezing effect of piezoelectric ceramics at low temperatures is obtained through space charge theory analysis. The variation of the dynamic piezoelectric voltage constant with temperature and time in the elastic region measured by the experiment is clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. B. Jaffe, R.S. Roth, S. Marzullo, Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Appl. Phys. 25, 809–810 (1954)

    Article  Google Scholar 

  2. J.E. Mckinney, C.S. Bowyer, Determination of piezoelectric properties as a function of pressure and temperature. J. Acoust. Soc. Am. 32, 56–61 (1960)

    Article  ADS  Google Scholar 

  3. Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. Appl. Phys. 75, 454–459 (1994)

    Article  Google Scholar 

  4. B. Noheda, N. Cereceda, T. Iglesias, G. Lifante, L.W. Yong, Composition dependence of the ferroelectric–paraelectric transition in the mixed system PbZr1xTixO3. Phys. Rev. B 51, 16388–16391 (1995)

    Article  ADS  Google Scholar 

  5. M. W. Hooker, Properties of PZT-Based Piezoelectric Ceramics Between −150 and 250℃. NASA Langley Technical Report Server. 208708 (1998)

  6. P.K. Panda, T.S. Kannan, J. Dubois, C. Olagnon, G. Fantozzi, Thermal shock and thermal fatigue study of ceramic materials on a newly developed ascending thermal shock test equipment. Sci. Technol. Adv. Mater. 3, 327–334 (2002)

    Article  Google Scholar 

  7. I.N. Andryushina, L.A. Reznichenko, I.M. Shmytko, L.A. Shilkina, K.P. Andryushin, Y.I. Yurasov, S.I. Dudkina, The PZT system (PbTixZr1-xO3, 0≤x≤1.0): dielectric response of solid solutions in broad temperature (10≤T≤1000 K) and frequency (10–2≤f≤107 Hz) ranges (Part 4). Ceram. Int. 39, 3979–3986 (2013)

    Article  Google Scholar 

  8. W.J. Xue, Study on Phase Transformation, Fracture Mechanism and Properties of Structural Ceramics at Low Temperature (Tsinghua University, Beijing, 2013).

    Google Scholar 

  9. C.F. Lan, H.C. Nie, X.F. Chen, J.X. Wang, H.L. He, Low temperature phase structure and electrical properties of dense PZT 95/5 ferroelectric ceramics. J. Inorg. Mater. 28, 502–506 (2013)

    Article  ADS  Google Scholar 

  10. S. Anand, A. Arockiarajan, Temperature dependent ferroelectric and ferroelastic behaviour of PZT wafers. Ceram. Int. 42, 15517–15529 (2016)

    Article  Google Scholar 

  11. W.Q. Cao, P.C. Liu, Y. Chen, R.K. Pan, Y.J. Qi, Influence of domain lag on residual polarization in ferroelectrics. Acta Physica Sin. 65, 262–268 (2016)

    Google Scholar 

  12. J. Belovickis, M. Ivanov, V. Samulionis, J. Banys, M.V. Silibin, Dielectric, ferroelectric, and piezoelectric investigation of polymer-based P(VDF-TrFE) composites. Phys. Status Solidi B 255, 1700196 (2017)

    Article  ADS  Google Scholar 

  13. E.L. Tang, Y. Li, R.Z. Wang, Y.F. Han, Experimental research on piezoelectric ceramics activating micro-sized thermochemical battery. Int. J. Appl. Ceram. Technol. 16, 1–8 (2019)

    Article  ADS  Google Scholar 

  14. R.Z. Wang, E.L. Tang, G.L. Yang, Dynamic piezoelectric properties of PZT-5H under shock compression. Phys. Status Solidi A 216, 1800859 (2019)

    Article  ADS  Google Scholar 

  15. R.Z. Wang, E.L. Tang, G.L. Yang, Y.F. Han, X. Lin, Y. Li, Experimental research of electrical output characteristics of stacked PZT-5H under high-overload conditions. J. Electron. Mater. 48, 2737–2744 (2019)

    Article  ADS  Google Scholar 

  16. R.Z. Wang, E.L. Tang, G.L. Yang, G.W. Gao, L. Wang, Research on layer-counting experimental simulation system for projectile penetrating multi-layered targets. Measurement 151, 107108 (2020)

    Article  Google Scholar 

  17. R.Z. Wang, E.L. Tang, G.L. Yang, Y.F. Han, Experimental research on dynamic response of PZT-5H under impact load. Ceram. Int. 46, 2868–2876 (2019)

    Article  Google Scholar 

  18. C. Flannigan, C.D. Tan, J.F. Scott, Electrical studies of Barkhausen switching noise in ferroelectric lead zirconate titanate (PZT) and BaTiO3: critical exponents and temperature-dependence. J. Phys. Condes. Matter 32, 05543 (2019)

    Google Scholar 

  19. D. Wang, Y. Fotinich, G.P. Carman, Influence of temperature on the electro-mechanical and fatigue behavior of piezoelectric ceramics. Appl. Phys. 83, 5342–5350 (1998)

    Article  Google Scholar 

  20. Y. Mao, Y. Li, Stress wave propagation through a thin plate sandwiched between two bars. Acta. Mech. Solida Sin. 29, 239–244 (2008)

    Google Scholar 

  21. Y.F. Lu, Y. Chen, Hopkinson Bar Experiment Technology (Science Press, Beijing, 2013).

    Google Scholar 

  22. J.X. Fang, Z.W. Yin, Dielectric Physics (Science Press, Beijing, 2000).

    Google Scholar 

  23. R.Q. Han, K. Huang, Solid State Physics (Higher Education Press, Beijing, 1985).

    Google Scholar 

  24. J.D. Li, Dielectric Theory (Science Press, Beijing, 2003).

    Google Scholar 

  25. T. Zeng, G.S. Wang, X.L. Dong, H. He, X. Chen, Investigation on FR(LT)–FR(HT) phase transition and pyroelectric properties of porous Zr-rich lead zirconate titante ceramics. Mater. Sci. Eng. B 140, 5–9 (2007)

    Article  Google Scholar 

  26. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  ADS  Google Scholar 

  27. T. Mitsui, I. Tatsuzaki, E. Nakamura, An Introduction to the Physics of Ferroelectrics (Gordon and Breach Science, London, 1976).

    Google Scholar 

  28. R.M. Mcmeeking, Electrostrictive stresses near crack-like flaws. Z. Angew. Math. Phys. 40, 615–627 (1989)

    Article  Google Scholar 

  29. M.L. Dunn, The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids. Eng. Fract. Mech. 48, 25–39 (1994)

    Article  ADS  Google Scholar 

  30. K. Okazaki, K. Nagata, Effects of grain size and porosity on electrical and optical properties of PLZT ceramics. J. Am. Ceram. Soc. 56, 82–86 (1973)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 11472178). Thanks to the research group in Key Laboratory of Transient Physical Mechanics and Energy Conversion Materials of Liaoning Province for their support during the experiments, especially for the efforts of Zhao Liangliang, He Zhenhui and Wang Junru in experimental measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enling Tang or Yafei Han.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, E., He, T., Han, Y. et al. Influence of temperature on the electrical characteristic parameters and dynamic electro-mechanical behaviour of PZT-5H. Eur. Phys. J. Plus 136, 364 (2021). https://doi.org/10.1140/epjp/s13360-021-01368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01368-1

Navigation