Skip to main content
Log in

A novel quantum blind signature protocol based on five-particle entangled state

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Inspired by the local indistinguishable of orthogonal product states, in our scheme, the classical message can be blinded by eight orthogonal product states which can avoid preparing higher-dimensional entangled states. And also inspired by the concept of quantum teleportation, our protocol can recover the original message via the five-particle entangled state sequence instead of transmitting the original message directly in the quantum channel. In this way, long distance communication can be realized between two communication participants and the probability of eavesdropping in the transmission channel is reduced. In addition, in the ideal quantum channel condition without noise, the security of the proposed scheme under some common eavesdropping attacks is validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tiliwalidi, J.Z. Zhang, S.C.A. Xie, Multi-bank E-payment protocol based on quantum proxy blind signature. Int. J. Theor. Phys. 58, 3510–3520 (2019)

    Article  MathSciNet  Google Scholar 

  2. X. Zhang, J.Z. Zhang, S.C. Xie, A secure quantum voting scheme based on quantum group blind signature. Int. J. Theor. Phys. 59, 719–729 (2020)

    Article  MathSciNet  Google Scholar 

  3. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  4. H.R. Wei, F.G. Deng, Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep. 4, 7551 (2014)

    Article  Google Scholar 

  5. D. Gottesman, I. Chuang, Quantum digital signatures. arXiv:quant-ph/0105032 (2001)

  6. H.R. Li, M.X. Luo, D.Y. Peng, X.J. Wang, An arbitrated quantum signature scheme without entanglement. Commun. Theor. Phys. 68, 317–322 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. X.-Y. Li, Y. Chang, S.-B. Zhang, J.-Q. Dai, T. Zheng, Quantum blind signature scheme based on quantum walk. Int. J. Theor. Phys. 59(7), 2059–2073 (2020)

    Article  MathSciNet  Google Scholar 

  8. H. Qin, W.K.S. Tang, R. Tso, Efficient quantum multi-proxy signature. Quantum Inf. Process. 18(2), 1–9 (2019)

    Article  MathSciNet  Google Scholar 

  9. D.H. Jiang, Y.L. Xu, G.B. Xu, Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)

    Article  MathSciNet  Google Scholar 

  10. D.H. Jiang, Q.Z. Hu, X.Q. Liang, G.B. Xu, A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18(9), 1–14 (2019)

    ADS  MathSciNet  Google Scholar 

  11. H. Chen, J.J. Shi, F. Zhou, J.J. Cheng, Quantum blind dual-signature scheme based on cluster states. IEEE International Conference. 978-1-0590-3028-6/17 (2017)

  12. X.P. Lou, Z.G. Chen, Y. Guo, A weak quantum blind signature with entanglement permutation. Int. J. Theor. Phys. 54(9), 3283–3292 (2015)

    Article  MathSciNet  Google Scholar 

  13. Y.L. Wang, M.S. Li, Z.J. Zheng, S.M. Fei, Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A 92, 032313 (2015)

    Article  ADS  Google Scholar 

  14. Z.C. Zhang, F. Gao, Y. Cao, S.J. Qin, Q.Y. Wen, Local indistinguishability of orthogonal product states. Phys. Rev. A 93, 012314 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. G.B. Xu, Q.Y. Wen, S.J. Qin, Y.H. Yang, F. Gao, Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93(3), 032341 (2016)

    Article  ADS  Google Scholar 

  16. G.B. Xu, Y.H. Yang, Q.Y. Wen, S.J. Qin, F. Gao, Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system. Sci. Rep. 6, 31048 (2016)

    Article  ADS  Google Scholar 

  17. T. Zheng, Y. Chang, S.-B. Zhang, Arbitrated quantum signature scheme with quantum teleportation by using two three-qubit GHZ states. Quantum Inf. Process. 19(5) (2020)

  18. J. Walgate, L. Hardy, Nonlocality, asymmetry, and distinguishing bipartite states. Phy. Rev. Lett. 89, 147901 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. G.B. Xu, Q.Y. Wen, F. Gao, S.J. Qin, H.J. Zuo, Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process. 16, 276 (2017)

    Article  ADS  Google Scholar 

  20. A. Cabello, Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  21. D.H. Jiang, X.J. Wang, G.B. Xu, J.Q. Lin, A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asia J. Appl. Math. 8, 447–462 (2018)

    Article  Google Scholar 

  22. S. Lin, G.D. Guo, Y.Z. Xu, Y. Sun, X.F. Liu, Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93(6), 062343 (2016)

    Article  ADS  Google Scholar 

  23. Y.F. He, W.P. Ma, Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3489 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. K.J. Zhang, X. Zhang, H.Y. Jia, L. Zhang, A new n-party quantum secret sharing model based on multiparty entangled states. Quantum Inf. Process. 18(3), 81 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Li, H. & Hu, J. A novel quantum blind signature protocol based on five-particle entangled state. Eur. Phys. J. Plus 136, 246 (2021). https://doi.org/10.1140/epjp/s13360-021-01234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01234-0

Navigation