Skip to main content
Log in

M-lump and interaction solutions of a (\(2+1\))-dimensional extended shallow water wave equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a more extended (\(2+1\))-dimensional shallow water wave equation is considered, which is integrable in terms of the Hirota’s bilinear method. With the aid of the bilinear method, the N-soliton solutions are obtained. By applying the long-wave limit method to the N-soliton solutions, the multiple lump solutions are gained. The dynamical characteristics of the single lumps among the M-lump wave are investigated. From the point of view of mathematical mechanism, the propagation orbits, velocities and the interactions among the lumps are analyzed systematically. Furthermore, various types of elastic and inelastic interaction solutions among the lumps, breathers and solitons are constructed, which develop the types of the solutions of the (\(2+1\))-dimensional extended shallow water wave model. The method presented in this paper can be applied to more nonlinear integrable equations to investigate the localized wave solutions and interaction solutions. The obtained results may provide some useful information to analyze the theory of the shallow water waves and solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.Q. Xu, S.F. Deng, Painlevé analysis, integrability and exact solutions for a (\(2+1\))-dimensional generalized Nizhnik–Novikov–Veselov equation. Eur. Phys. J. Plus 131, 385 (2016)

    Article  Google Scholar 

  2. Y. Zhou, S. Manukure, W.X. Ma, Lump and lump-soliton solutions to the Hirota–Satsuma–Ito equation. Commun. Nonlinear Sci. Numer. Simul. 68, 56–62 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. M. Gürses, A. Pekcan, Nonlocal modified KdV equations and their soliton solutions by Hirota method. Commun. Nonlinear Sci. Numer. Simul. 67, 427–448 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. X.G. Geng, Y.Y. Zhai, H.H. Dai, Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy. Adv. Math. 263, 123–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Hou, E.G. Fan, Z.J. Qiao, The algebro-geometric solutions for the Fokas–Olver–Rosenau–Qiao (FORQ) hierarchy. J. Geom. Phys. 117, 105–133 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. P.V. Nabelek, Algebro-geometric finite gap solutions to the Korteweg–de Vries equation as primitive solutions. Phys. D 414, 132709 (2020)

    Article  MathSciNet  Google Scholar 

  7. P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137, 295–368 (1993)

  8. A.S. Fokas, J. Lenells, The unified method: I. Nonlinearizable problems on the half-line. J. Phys. A Math. Theor. 45, 195201 (2012)

  9. G.W. Bluman, S.C. Anco, Symmetry and iteration methods for differential equations (Springer, Berlin, 2002)

    MATH  Google Scholar 

  10. G.W. Bluman, A.F. Cheviakov, S.C. Anco, Applications of symmetry methods to partial differential equations. Springer, Berlin (2010)

  11. Z.L. Zhao, B. Han, Lie symmetry analysis of the Heisenberg equation. Commun. Nonlinear Sci. Numer. Simul. 45, 220–234 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Z.L. Zhao, B. Han, Residual symmetry, Bäcklund transformation and CRE solvability of a (\(2+1\))-dimensional nonlinear system. Nonlinear Dyn. 94, 461–474 (2018)

    Article  MATH  Google Scholar 

  13. Z.L. Zhao, Bäcklund transformations, rational solutions and soliton-cnoidal wave solutions of the modified Kadomtsev–Petviashvili equation. Appl. Math. Lett. 89, 103–110 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Z.L. Zhao, Conservation laws and nonlocally related systems of the Hunter–Saxton equation for liquid crystal. Anal. Math. Phys. 9, 2311–2327 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. B.L. Guo, L.M. Ling, Q.P. Liu, High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 130, 317–344 (2012)

    Article  MATH  Google Scholar 

  16. J.S. He, L.H. Wang, L.J. Li, K. Porsezian, R. Erdélyi, Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation. Phys. Rev. E 89, 062917 (2014)

    Article  ADS  Google Scholar 

  17. S.W. Xu, J.S. He, D. Mihalache, Rogue waves generation through multiphase solutions degeneration for the derivative nonlinear Schrödinger equation. Nonlinear Dyn. 97, 2443–2452 (2019)

    Article  MATH  Google Scholar 

  18. Z.Z. Lan, J.J. Su, Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 96, 2535–2546 (2019)

    Article  Google Scholar 

  19. Z.L. Zhao, B. Han, The Riemann–Bäcklund method to a quasiperiodic wave solvable generalized variable coefficient (\(2+1\))-dimensional KdV equation. Nonlinear Dyn. 87, 2661–2676 (2017)

    Article  MATH  Google Scholar 

  20. Z.L. Zhao, L.C. He, Bäcklund transformations and Riemann–Bäcklund method to a (\(3+1\))-dimensional generalized breaking soliton equation. Eur. Phys. J. Plus 135, 639 (2020)

    Article  Google Scholar 

  21. J.H. Luo, E.G. Fan, \({{\bar{\partial }}}-\)dressing method for the coupled Gerdjikov–Ivanov equation. Appl. Math. Lett. 110, 106589 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. V.G. Dubrovsky, A.V. Topovsky, Multi-lump solutions of KP equation with integrable boundary via \({{\bar{\partial }}}\)-dressing method. Phys. D 414, 132740 (2020)

    Article  MathSciNet  Google Scholar 

  23. S.V. Manakov, V.E. Zakharov, L.A. Bordag, A.R. Its, V.B. Matveev, Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)

    Article  ADS  Google Scholar 

  24. J. Satsuma, M.J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Y. Zhang, Y.P. Liu, X.Y. Tang, \(M\)-lump solutions to a (\(3+1\))-dimenisonal nonlinear evolution equation. Comput. Math. Appl. 76, 592–601 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Zhang, Y.P. Liu, X.Y. Tang, \(M\)-Lump and interactive solutions to a (\(3+1\))-dimensional nonlinear system. Nonlinear Dyn. 93, 2533–2541 (2018)

    Article  MATH  Google Scholar 

  27. H.L. An, D.L. Feng, H.X. Zhu, General \(M\)-lump, high-order breather and localized interaction solutions to the \(2+1\)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 98, 1275–1286 (2019)

    Article  Google Scholar 

  28. H.D. Guo, T.C. Xia, B.B. Hu, High-order lumps, high-order breathers and hybrid solutions for an extended (\(3+1\))-dimensional Jimbo–Miwa equation in fluid dynamics. Nonlinear Dyn. 100, 601–614 (2020)

    Article  MATH  Google Scholar 

  29. W. Tan, Z.D. Dai, Z.Y. Yin, Dynamics of multi-breathers, N-solitons and M-lump solutions in the (\(2+1\))-dimensional KdV equation. Nonlinear Dyn. 96, 1605–1614 (2019)

    Article  MATH  Google Scholar 

  30. J. Manafian, M. Lakestani, N-lump and interaction solutions of localized waves to the (\(2+1\))-dimensional variable-coefficient Caudrey–Dodd–Gibbon–Kotera–Sawada equation. J. Geom. Phys. 150, 103598 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. O.A. Ilhan, J. Manafian, A. Alizadeh, S.A. Mohammed, M-lump and interaction between M-lump and N-stripe for the third-order evolution equation arising in the shallow water. Adv. Differ. Equ. 2020, 207 (2020)

    Article  MathSciNet  Google Scholar 

  32. J.G. Liu, M. Eslami, H. Rezazadeh, M. Mirzazadeh, Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev–Petviashvili equation. Nonlinear Dyn. 95, 1027–1033 (2019)

    Article  MATH  Google Scholar 

  33. Z. Zhang, S.X. Yang, B. Li, Soliton molecules, asymmetric solitons and hybrid solutions for (\(2+1\))-dimensional fifth-order KdV equation. Chin. Phys. Lett. 36, 120501 (2019)

    Article  ADS  Google Scholar 

  34. J.J. Dong, B. Li, M. Yuen, Soliton molecules and mixed solutions of the (\(2+1\))-dimensional bidirectional Sawada–Kotera equation. Commun. Theor. Phys. 72, 025002 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  35. Z.L. Zhao, L.C. He, M-lump, high-order breather solutions and interaction dynamics of a generalized \((2+1)\)-dimensional nonlinear wave equation. Nonlinear Dyn. 100, 2753–2765 (2020)

    Article  Google Scholar 

  36. Z.L. Zhao, L.C. He, M-lump and hybrid solutions of a generalized (\(2+1\))-dimensional Hirota–Satsuma–Ito equation. Appl. Math. Lett. 111, 106612 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. W.X. Ma, Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 2305–2310 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  38. B. Ren, W.X. Ma, J. Yu, Characteristics and interactions of solitary and lump waves of a (\(2+1\))-dimensional coupled nonlinear partial differential equation. Nonlinear Dyn. 96, 717–727 (2019)

    Article  MATH  Google Scholar 

  39. J.P. Yu, F.D. Wang, W.X. Ma, Y.L. Sun, C.M. Khalique, Multiple-soliton solutions and lumps of a \((3+1)\)-dimensional generalized KP equation. Nonlinear Dyn. 95, 1687–1692 (2019)

    Article  MATH  Google Scholar 

  40. W.X. Ma, Z.Y. Qin, X. Lü, Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923–931 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. X. Lü, W.X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. X. Guan, W.J. Liu, Q. Zhou, A. Biswas, Some lump solutions for a generalized \((3+1)\)-dimensional Kadomtsev–Petviashvili equation. Appl. Math. Comput. 366, 124757 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Y.F. Hua, B.L. Guo, W.X. Ma, X. Lü, Interaction behavior associated with a generalized \((2+1)\)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. P.A. Clarkson, E. Dowie, Rational solutions of the Boussinesq equation and applications to rogue waves. Trans. Math. Appl. (2017). https://doi.org/10.1093/40imatrm/tnx003

    Article  MathSciNet  MATH  Google Scholar 

  45. Z.L. Zhao, L.C. He, Multiple lump solutions of the \((3+1)\)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Appl. Math. Lett. 95, 114–121 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Z.L. Zhao, L.C. He, Y.B. Gao, Rogue wave and multiple lump solutions of the (\(2+1\))-dimensional Benjamin–Ono equation in fluid mechanics. Complexity 2019, 8249635 (2019)

    MATH  Google Scholar 

  47. L.C. He, Z.L. Zhao, Multiple lump solutions and dynamics of the generalized the generalized (\(3+1\))-dimensional KP equation. Mod. Phys. Lett. B 33, 2050167 (2020)

    Article  MathSciNet  Google Scholar 

  48. A.M. Wazwaz, Multiple-soliton solutions for extended shallow water wave equations. Stud. Math. Sci. 1, 21–29 (2010)

    Google Scholar 

  49. H.O. Roshid, W.X. Ma, Dynamics of mixed lump-solitary waves of an extended \((2+1)\)-dimensional shallow water wave model. Phys. Lett. A 382, 3262–3268 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  50. Q.M. Huang, Y.T. Gao, Wronskian, Pfaffian and periodic wave solutions for a \((2+1)\)-dimensional extended shallow water wave equation. Nonlinear Dyn. 89, 2855–2866 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Y.N. Tang, W.J. Zai, New periodic-wave solutions for \((2+1)\)- and \((3+1)\)-dimensional Boiti–Leon–Manna–Pempinelli equations. Nonlinear Dyn. 81, 249–255 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Shanxi Province Science Foundation for Youths (No. 201901D211274), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L0531) and Research Project Supported by Shanxi Scholarship Council of China (No. 2020-105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Zhang, J. & Zhao, Z. M-lump and interaction solutions of a (\(2+1\))-dimensional extended shallow water wave equation. Eur. Phys. J. Plus 136, 192 (2021). https://doi.org/10.1140/epjp/s13360-021-01188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01188-3

Navigation