Skip to main content
Log in

Quark matter within Polyakov chiral SU(3) quark mean field model at finite temperature

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Thermodynamical properties and phase diagram of asymmetric strange quark matter using the Polyakov chiral \(\text {SU(3)}\) quark mean field (PCQMF) model at finite temperature and chemical potential have been investigated. Within the PCQMF model, the properties of quark matter are calculated through the scalar fields \(\sigma \), \(\zeta \), \(\delta \) and \(\chi \), the vector fields \(\omega \), \(\rho \) and \(\phi \) and the Polyakov loop fields \(\Phi \) and \(\bar{\Phi }\). The isospin splitting of constituent quark masses is observed at large isospin asymmetry. The effect of temperature and strangeness fraction on energy per baryon and equation of state is found to be appreciable in quark matter. The effect of the Polyakov loop dynamics on several thermodynamical bulk quantities such as energy density, entropy density and trace anomaly is presented. Furthermore, within the model under mean field approximation, we explore the phase structure in \(T-\mu \) plane and analyzed the impact of varying the strength of vector coupling and isospin chemical potential on nature of phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. D. Boyanovsky et al., Ann. Rev. Nucl. Part. Sci. 56, 441 (2006)

    Article  ADS  Google Scholar 

  2. T. Boeckel et al., Prog. Part. Nucl. Phys. 66, 266 (2011)

    Article  ADS  Google Scholar 

  3. R. Marty, J. Aichelin, Phys. Rev. C 87, 034912 (2013)

    Article  ADS  Google Scholar 

  4. H.T. Janka, Ann. Rev. Nucl. Part. Sci. 62, 407 (2012)

    Article  ADS  Google Scholar 

  5. F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005)

    Article  ADS  Google Scholar 

  6. M. Alford, Ann. Rev. Nucl. Part. Sci. 51, 131 (2001)

    Article  ADS  Google Scholar 

  7. D.H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004)

    Article  ADS  Google Scholar 

  8. Z. Fodor, S.D. Katz, J. High Energy Phys. 04, 050 (2004)

    Article  ADS  Google Scholar 

  9. Y. Iwasaki et al., Phys. Rev. D 69, 014507 (2004)

    Article  ADS  Google Scholar 

  10. L. McLerran, R.D. Pisarski, Nucl. Phys. A 796, 83 (2007)

    Article  ADS  Google Scholar 

  11. L. McLerran, Nucl. Phys. A 830, 709 (2009)

    Article  ADS  Google Scholar 

  12. K. Fukushima, Phys. Lett. B 591, 277 (2004)

    Article  ADS  Google Scholar 

  13. C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006)

    Article  ADS  Google Scholar 

  14. R.D. Pisarski, Phys. Rev. D 62, 111501 (2000)

    Article  ADS  Google Scholar 

  15. K. Fukushima, Phys. Rev. D 77, 114028 (2008)

    Article  ADS  Google Scholar 

  16. D.P. Menezes et al., J. Phys. G 32, 1081 (2006)

    Article  ADS  Google Scholar 

  17. M. Kalam et al., Int. J. Theor. Phys. 52, 3319 (2013)

    Article  Google Scholar 

  18. R. Lastowiecki et al., Phys. Part. Nuclei 46, 843 (2015)

    Article  Google Scholar 

  19. E. Annala et al., arXiv:1903.09121v1, astro-ph.HE (2019)

  20. A. Bodmer, Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  21. E. Farhi, R. Jaffe, Phys. Rev. D 30, 2379 (1984)

    Article  ADS  Google Scholar 

  22. E. Witten, Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  23. S. Thirukkanesh, F.C. Ragel, Chin. Phys. C 41, 015102 (2017)

    Article  ADS  Google Scholar 

  24. M.R. Shahzad, G. Abbas, Int. J. Geom. Methods Mod. Phys. 16, 1950132 (2019)

    Article  MathSciNet  Google Scholar 

  25. R. Vogt, Ultra-relativistic Heavy-Ion Collisions (Elsevier, Amsterdam, 2007)

    Google Scholar 

  26. N. Masera, Nucl. Phys. A 590, 93 (1995)

    Article  ADS  Google Scholar 

  27. G. Agakichiev et al., Phys. Rev. Lett. 75, 1272 (1995)

    Article  ADS  Google Scholar 

  28. R.J. Porter et al., Phys. Rev. Lett. 79, 1229 (1997)

    Article  ADS  Google Scholar 

  29. W.K. Wilson et al., Phys. Rev. C 57, 1865 (1998)

    Article  ADS  Google Scholar 

  30. G. Mahajan, S.K. Dhiman, Phys. Rev. C 84, 045804 (2011)

    Article  ADS  Google Scholar 

  31. C.Y. Wong, Introduction to High Energy Heavy Ion Collisions (World Scientific Publishing Co., Singapore, 1994)

    Book  Google Scholar 

  32. A. Sissakian et al., J. Phys. G 36, 064069 (2009)

    Article  ADS  Google Scholar 

  33. V. Kekelidze et al., Phys. Atom. Nucl. 75, 542 (2012)

    Article  ADS  Google Scholar 

  34. C.D. Roberts, S.M. Schmidt, Prog. Part. Nucl. Phys. 45, S1 (2000)

    Article  ADS  Google Scholar 

  35. R. Alkofer, L. von Smekal, Phys. Rep. 353, 281 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  36. P. Maris, C.D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003)

    Article  ADS  Google Scholar 

  37. S.S. Xu et al., Phys. Rev. D 91, 056003 (2015)

    Article  ADS  Google Scholar 

  38. G.N. Fowler et al., Z. Phys. C 9, 271 (1981)

    Article  ADS  Google Scholar 

  39. S. Chakrabarty et al., Phys. Lett. B 229, 112 (1989)

    Article  ADS  Google Scholar 

  40. S. Chakrabarty et al., Phys. Rev. D 43, 627 (1991)

    Article  ADS  Google Scholar 

  41. S. Chakrabarty et al., Phys. Lett. D 48, 1409 (1993)

    ADS  Google Scholar 

  42. O.G. Benvenuto, G. Lugones, Phys. Lett. D 51, 1989 (1995)

    ADS  Google Scholar 

  43. K. Tsushima et al., Nucl. Phys. A 630, 691 (1998)

    Article  ADS  Google Scholar 

  44. B.J. Schaefer et al., Phys. Rev. D 76, 074023 (2007)

    Article  ADS  Google Scholar 

  45. T.K. Herbst et al., Phys. Lett. B 696, 58 (2011)

    Article  ADS  Google Scholar 

  46. R. Stiele et al., Phys. Lett. B 729, 72 (2014)

    Article  ADS  Google Scholar 

  47. P.-C. Chu et al., Eur. Phys. J. C 77, 512 (2017)

    Article  ADS  Google Scholar 

  48. P. Costa et al., Symmetry 2, 1338 (2010)

    Article  Google Scholar 

  49. Y. Sakai et al., Phys. Rev. D 82, 076003 (2010)

    Article  ADS  Google Scholar 

  50. T. Sasaki et al., Phys. Rev. D 85, 056009 (2012)

    Article  ADS  Google Scholar 

  51. T.E. Restrepo et al., Phys. Rev. D 91, 065017 (2015)

    Article  ADS  Google Scholar 

  52. R. Gatto, M. Ruggieri, Phys. Rev. D 83, 034016 (2011)

    Article  ADS  Google Scholar 

  53. R. Gatto, M. Ruggieri, Phys. Rev. D 78, 034015 (2011)

    Google Scholar 

  54. H. Mao et al., J. Phys. G: Nucl. Part. Phys. 37, 035001 (2010)

    Article  ADS  Google Scholar 

  55. B.J. Schaefer, M. Wagner, Prog. Part. Nucl. Phys. 62, 381 (2009)

    Article  ADS  Google Scholar 

  56. G.X. Peng et al., Phys. Rev. C 62, 025801 (2000)

    Article  ADS  Google Scholar 

  57. G.X. Peng et al., Phys. Rev. C 77, 065807 (2008)

    Article  ADS  Google Scholar 

  58. K. Rajgopal, F. Wilczek, Phys. Rev. Lett. 86, 3492 (2011)

    Article  ADS  Google Scholar 

  59. P. Wang et al., Commun. Theor. Phys. 36, 71 (2001)

    Article  ADS  Google Scholar 

  60. P. Wang et al., Nucl. Phys. A 688, 791 (2001)

    Article  ADS  Google Scholar 

  61. S. Chin, A. Kerman, Phys. Rev. Lett. 43, 1292 (1979)

    Article  ADS  Google Scholar 

  62. M.S. Berger, R.L. Jaffe, Phys. Rev. C 35, 213 (1987)

    Article  ADS  Google Scholar 

  63. R. Xu, Mod. Phys. Lett. A 23, 1629 (2008)

    Article  ADS  Google Scholar 

  64. Y. Zhang et al., Europhys. Lett. 56, 361 (2001)

    Article  ADS  Google Scholar 

  65. Y. Zhang, R.K. Su, Phys. Rev. C 65, 035202 (2002)

    Article  ADS  Google Scholar 

  66. W.L. Qian, R.K. Su, Int. J. Mod. Phys. A 20, 1931 (2005)

    Article  ADS  Google Scholar 

  67. W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)

  68. P. Wang et al., Phys. Rev. C 75, 045202 (2007)

    Article  ADS  Google Scholar 

  69. T.M. Schwarz, S.P. Klevansky, G. Rapp, Phys. Rev. C 60, 055205 (1999)

    Article  ADS  Google Scholar 

  70. M. Buballa, M. Oertel, Phys. Lett. B 457, 261 (1999)

    Article  ADS  Google Scholar 

  71. H. Liu, J. Xu, C.M. Ko, Phys. Lett. B 803, 135343 (2020)

    Article  MathSciNet  Google Scholar 

  72. P.-C. Chu, L.-W. Chen, Astrophys. J. 780, 135 (2014)

    Article  ADS  Google Scholar 

  73. P. Costa et al., Phys. Rev. D 102, 054010 (2020)

    Article  ADS  Google Scholar 

  74. P. Wang et al., Phys. Rev. C 67, 015210 (2003)

    Article  ADS  Google Scholar 

  75. F. Wei-Jie et al., SciPost Phys. Core 2, 002 (2020)

    Article  Google Scholar 

  76. H. Singh et al., Eur. Phys. J. A 54, 120 (2018)

    Article  ADS  Google Scholar 

  77. P. Wang et al., Nucl. Phys. A 705, 455 (2002)

    Article  ADS  Google Scholar 

  78. P. Wang et al., Nucl. Phys. A 744, 273 (2004)

    Article  ADS  Google Scholar 

  79. H. Singh et al., arXiv:1811.05125v1, hep-th (2018)

  80. M. Drews et al., Phys. Rev. D 88, 09601 (2013)

    Article  Google Scholar 

  81. P. Papazoglou et al., Phys. Rev. C 59, 411 (1999)

    Article  ADS  Google Scholar 

  82. A. Mishra et al., Phys. Rev. C 69, 015202 (2004)

    Article  ADS  Google Scholar 

  83. A. Mishra et al., Phys. Rev. C 69, 024903 (2004)

    Article  ADS  Google Scholar 

  84. S. Weinberg, Phys. Rev. 166, 1568 (1968)

    Article  ADS  Google Scholar 

  85. S. Coleman et al., Phys. Rev. 177, 2239 (1969)

    Article  ADS  Google Scholar 

  86. W.A. Bardeen, B.W. Lee, Phys. Rev. 177, 2389 (1969)

    Article  ADS  Google Scholar 

  87. J. Schechter, Phys. Rev. D 21, 3393 (1980)

    Article  ADS  Google Scholar 

  88. H. Gomm et al., Phys. Rev. D 33, 801 (1986)

    Article  ADS  Google Scholar 

  89. E.K. Heide, S. Rudaz, P.J. Ellis, Nucl. Phys. A 571, 713 (1994)

    Article  ADS  Google Scholar 

  90. G.E. Brown, M. Rho, Phys. Rev. Lett. 66, 2720 (1991)

    Article  ADS  Google Scholar 

  91. A. Kumar, A. Mishra, Phys. Rev. C 82, 045207 (2010)

    Article  ADS  Google Scholar 

  92. G.Y. Shao et al., Phys. Rev. D 94, 014008 (2016)

    Article  ADS  Google Scholar 

  93. A.M. Polyakov, Phys. Lett. B 72, 477 (1978)

    Article  ADS  Google Scholar 

  94. S. Roessner et al., Phys. Rev. D 75, 034007 (2007)

    Article  ADS  Google Scholar 

  95. S. Roessner et al., Nucl. Phys. A 814, 118 (2008)

    Article  ADS  Google Scholar 

  96. M. Fukugita, M. Okawa, A. Ukava, Nucl. Phys. B 337, 181 (1990)

    Article  ADS  Google Scholar 

  97. V. Skokov et al., Phys. Rev. D 82, 034029 (2010)

    Article  ADS  Google Scholar 

  98. U.S. Gupta, V.K. Tiwari, Phys. Rev. D 85, 014010 (2012)

    Article  ADS  Google Scholar 

  99. S. Chatterjee, K.A. Mohan, Phys. Rev. D 85, 074218 (2012)

    ADS  Google Scholar 

  100. I.N. Mishustin et al., Phys. At. Nucl. 64, 802 (2001)

    Article  Google Scholar 

  101. L. Zhen-Yan et al., Nucl. Sci. Tech. 27, 148 (2016)

    Article  Google Scholar 

  102. P.-C. Chu et al., Phys. Lett. C 778, 447 (2018)

    Article  ADS  Google Scholar 

  103. I.N. Mishustin et al., Phys. Rev. C 62, 034901 (2000)

    Article  ADS  Google Scholar 

  104. A. Tawfik, Phys. Rev. C 88, 035203 (2013)

    Article  ADS  Google Scholar 

  105. M. Cheng et al., Phys. Rev. D 81, 054504 (2010)

    Article  ADS  Google Scholar 

  106. S. Borsanyi et al., J. High Energy Phys. 08, 053 (2012)

    Article  ADS  Google Scholar 

  107. E. Megias et al., Phys. Rev. D 74, 065005 (2006)

    Article  ADS  Google Scholar 

  108. E. Megias et al., Phys. Rev. D 74, 114014 (2006)

    Article  ADS  Google Scholar 

  109. A. Abhishek, H. Mishra, S. Ghosh, Phys. Rev. D 97, 014005 (2018)

    Article  ADS  Google Scholar 

  110. A. Bazavov et al., Phys. Rev. D 85, 054503 (2012)

    Article  ADS  Google Scholar 

  111. A. Bazavov et al., Phys. Rev. D 795, 15 (2019)

    MathSciNet  Google Scholar 

  112. A. Bazavov et al., Phys. Rev. D 95, 054504 (2017)

    Article  ADS  Google Scholar 

  113. H.T. Ding et al., Phys. Rev. Lett. 123, 062002 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  114. H.T. Ding et al., Nucl. Phys. A 982, 211 (2019)

    Article  ADS  Google Scholar 

  115. H.T. Ding, F. Karsch, S. Mukherjee, Int. J. Mod. Phys. E 24, 1530007 (2015)

    Article  ADS  Google Scholar 

  116. S. Borsanyi et al., J. High Energy Phys. 09, 073 (2010)

    Article  ADS  Google Scholar 

  117. H. Liu et al., Phys. Rev. C 94, 065032 (2016)

    Google Scholar 

  118. M. Ciminale et al., Phys. Rev. D 77, 054023 (2008)

    Article  ADS  Google Scholar 

  119. W.J. Fu, Z. Zhang, Y.X. Liu, Phys. Rev. D 77, 014006 (2008)

    Article  ADS  Google Scholar 

  120. A.V. Friesen et al., Int. J. Mod. Phys. A 30, 1550089 (2015)

    Article  ADS  Google Scholar 

  121. D. Toublan, J.B. Kogut, Phys. Lett. B 564, 212 (2003)

    Article  ADS  Google Scholar 

  122. B.B. Brandt, G. Endrodi, PoS Lattice 2016, 039 (2016) (arXiv:1611.06758v1, hep-lat (2016))

  123. D. Toublan, J.B. Kogut, Phys. Lett. B 605, 129 (2005)

    Article  ADS  Google Scholar 

  124. P. Wang et al., Phys. Rev. C 70, 055204 (2004)

    Article  ADS  Google Scholar 

  125. C. Sasaki, B. Friman, K. Redlich, Phys. Rev. Lett. 99, 232301 (2007)

    Article  ADS  Google Scholar 

  126. V. Skokov et al., Phys. Rev. C 82, 015206 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the support toward this work from the Ministry of Science and Human Resources (MHRD), Government of India, via Institute fellowship under the National Institute of Technology Jalandhar. Arvind Kumar sincerely acknowledges the DST-SERB, Government of India, for funding of research Project CRG/2019/000096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, M., Kumar, A. Quark matter within Polyakov chiral SU(3) quark mean field model at finite temperature. Eur. Phys. J. Plus 136, 19 (2021). https://doi.org/10.1140/epjp/s13360-020-00999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00999-0

Navigation