Skip to main content
Log in

Exact and approximate solutions to projectile motion in air incorporating Magnus effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, it is targeted to present exact and approximate solutions to the motion of fired projectile in air subject to the Magnus effect. Closed-form solutions for the speed of the object are provided either when the quadratic drag force is negligible or when the quadratic Magnus force is negligible. An expression for the vertical distance of the projectile thrown from a fixed position is also accounted for measuring the impacts of Magnus effects on the maximum height, the striking velocity to the ground and angle of stroke of the projectile during motion. In the case of simultaneous existence of quadratic drag and Magnus forces together, the governing motion equation is highly nonlinear, permitting only to the analytical perturbation solutions. Otherwise, full solution is further representable under the restriction of a uniform Magnus force with a still quadratic drag force. The presented formulae can be employed to estimate and optimize the characteristic kinematics of the projectile. Examples are eventually provided and discussed for the accuracy and reliability of the given formulae against the full numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Starratt, T. Sanders, E. Cepus, A. Poursartip, R. Vaziri, An efficient method for continuous measurement of projectile motion in ballistic impact experiments. Int. J. Impact Eng. 24(2), 155–170 (2000)

    Article  Google Scholar 

  2. Y. Wang, J. Cheng, J.-Y. Yu, X.-M. Wang, Influence of yawing force frequency on angular motion and ballistic characteristics of a dual-spin projectile. Def. Technol. 12(2), 124–128 (2016)

    Article  Google Scholar 

  3. V. Vijayan, S. Hegde, N.K. Gupta, Deformation and ballistic performance of conical aluminum projectiles impacting thin aluminum targets: influence of apex angle. Int. J. Impact Eng. 110, 39–46 (2017)

    Article  Google Scholar 

  4. H. Li, X. Zhang, J. Gao, Modeling and calculation method of target damage based on multi-attitude flying projectile in space intersection. Optik 180, 648–656 (2019)

    Article  ADS  Google Scholar 

  5. J.-G. Gao, Z.-H. Chen, Z.-G. Huang, W.-T. Wu, Y.-J. Xiao, Numerical investigations on the oblique water entry of high-speed projectiles. Appl. Math. Comput. 362, 124547 (2019)

    Article  MathSciNet  Google Scholar 

  6. W.C. Uhlig, P.R. Berning, P.T. Bartkowski, M.J. Coppinger, Electrically-launched mm-sized hypervelocity projectiles. Int. J. Impact Eng. 137, 103441 (2020)

    Article  Google Scholar 

  7. R. D. Mehta, J. M. Pallis, in Sports Ball Aerodynamics: Effects of Velocity, Spin and Surface Roughness Materials and Science in Sports, ed. by F. H. (Sam) Froes, S. J. Haake (2001)

  8. R. Mehta, F. Alam, A. Subic, Review of tennis ball aerodynamics. Sports Technol. 1(1), 7–16 (2008)

    Article  Google Scholar 

  9. C. Guzman, C. Brownell, E.M. Kommer, The Magnus effect and the American football. Sports Eng. 19, 13–20 (2016)

    Article  Google Scholar 

  10. A. Kharlamov, Z. Chara, P. Vlasak, Magnus and Drag Forces Acting on Golf Ball, Colloquium Fluid Dynamics (Institute of Thermomechanics AS CR, Prague, 2007), pp. 1–9

    Google Scholar 

  11. G.J.E. Santos, M.A. Aguirre-Lopez, O. Diaz-Hernandez, F. Hueyotl-Zahuantitla, J. Morales-Castillo, F.-J. Almaguer, On the aerodynamic forces on a baseball, with applications. Front. Appl. Math. Stat. 4, 1–9 (2019)

    MATH  Google Scholar 

  12. G. Wauthy, M. Leponce, N. Banai, G. Sylin, J.-C. Lions, The backwards jump of the box mite. Proc R. Soc. Lond. B 265, 2235–2242 (1998)

    Article  Google Scholar 

  13. S. Vogel, Comparative Biomechanics: Life’s Physical World (Princeton University Press, Princeton, 2003)

    MATH  Google Scholar 

  14. N.P. Linthorne, D.J. Everett, Release angle for attaining maximum distance in the soccer throw-in. Sports Biomech. 5(2), 243–260 (2006)

    Article  Google Scholar 

  15. G. Mishuris, A. Plakhov, Magnus effect and dynamics of a spinning disc in a rarefied medium. Arch. Mech. 61(5), 391–406 (2009)

    MathSciNet  MATH  Google Scholar 

  16. M. Muto, H. Watanabe, M. Tsubokura, N. Oshima, Negative magnus effect on a rotating sphere at around the critical Reynolds number. J. Phys. Conf. Ser. 318, 032021 (2011)

    Article  Google Scholar 

  17. C.-W. Chen, Y. Jiang, Computational fluid dynamics study of magnus force on an axis-symmetric, disk-type AUV with symmetric propulsion. Symmetry 11, 397 (2019)

    Article  Google Scholar 

  18. B.I. Konosevich, An estimate of the error of the linearized equations of motion of an axisymmetric projectile. J. Appl. Math. Mech. 72(6), 673–681 (2008)

    Article  MathSciNet  Google Scholar 

  19. F.J. Rooney, S.K. Eberhard, On the ascent and descent times of a projectile in a resistant medium. Int. J. Non-Linear Mech. 46(5), 742–744 (2011)

    Article  ADS  Google Scholar 

  20. P. Chudinov, Approximate analytical investigation of projectile motion in a medium with quadratic drag force Int. J. Sports Sci. Eng. 5, 27–42 (2011)

    Google Scholar 

  21. A. Ebaid, Analysis of projectile motion in view of fractional calculus. Appl. Math. Model. 35(3), 1231–1239 (2011)

    Article  MathSciNet  Google Scholar 

  22. J. Seifert, A review of the Magnus effect in aeronautics. Prog. Aerosp. Sci. 55, 17–45 (2012)

    Article  Google Scholar 

  23. G. Robinson, I. Robinson, The motion of an arbitrarily rotating spherical projectile and its application to ball games. Phys. Scr. 88, 018101 (2013)

    Article  ADS  Google Scholar 

  24. M. Swaczyna, P. Volni, Uniform projectile motion: dynamics, symmetries and conservation laws. Rep. Math. Phys. 73(2), 177–200 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. H. Sarafian, Impact of the drag force and the magnus effect on the trajectory of a baseball. World J. Mech. 5, 49–58 (2015)

    Article  ADS  Google Scholar 

  26. M. Turkyilmazoglu, Highly accurate analytic formulae for projectile motion subjected to quadratic drag. Eur. J. Phys. 37, 035001 (2016)

    Article  Google Scholar 

  27. S.I.O. Scholte, The Influence of the Magnus Effect in Tennis, Bachelor’s Project Applied Mathematics (University of Groningen, Groningen, 2017)

    Google Scholar 

  28. X. Gao, Q.M. Li, Trajectory instability and convergence of the curvilinear motion of a hard projectile in deep penetration. Int. J. Mech. Sci. 121, 123–142 (2017)

    Article  Google Scholar 

  29. J.M. Davies, The aerodynamics of golf balls. J. Appl. Phys. 20, 821–8 (1949)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Turkyilmazoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkyilmazoglu, M., Altundag, T. Exact and approximate solutions to projectile motion in air incorporating Magnus effect. Eur. Phys. J. Plus 135, 566 (2020). https://doi.org/10.1140/epjp/s13360-020-00593-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00593-4

Navigation