Skip to main content
Log in

A review of the analysis of wind-influenced projectile motion in the presence of linear and nonlinear drag force

  • Review
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The analysis of wind-influenced projectile motion in the case of linear and nonlinear (quadratic or nonquadratic) drag force is reviewed. For quadratic or more general nonlinear drag force, the results can be obtained only numerically, because the governing coupled differential equations of motion do not allow an analytical solution, although there is a closed-form relationship between the velocity and an appropriately defined angle parameter in the case of quadratic drag. For linear drag force, the entire solution, including the expressions for the time-variation of velocity components and the shape of the trajectory, can be derived in closed form. Forward-to-backward transition of the direction of motion of a projectile launched against horizontal wind is analyzed. If during different phases of motion different types of drag apply, the extents of these phases are not known in advance and the general expression for the drag force that encompasses the entire range of the Reynolds number must be used throughout the motion, in conjunction with the numerical solution of the governing differential equations. The transition from nonquadratic to quadratic drag is discussed. Illustrative examples of wind-influenced projectile motion considered in this review include the motion of golf balls, respiratory droplets, powder particles, and flea beetles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Timoshenko, S., Young, D.: Advanced Dynamics. McGraw-Hill, New York (1948)

    MATH  Google Scholar 

  2. Long, L.N., Weiss, H.: The velocity dependence of aerodynamic drag: a primer for mathematicians. Am. Math. Mon. 106, 127–135 (1999). https://doi.org/10.1080/00029890.1999.12005019

    Article  MathSciNet  MATH  Google Scholar 

  3. Timmerman, P., Van der Weele, K.: On the rise and fall of a ball with linear or quadratic drag Am. J. Phys. 67, 538–546 (1999). https://doi.org/10.1119/1.19320

    Article  Google Scholar 

  4. Fay, T.H.: Quadratic damping. Int. J. Math. Educ. Sci. Technol. 43, 789–803 (2012). https://doi.org/10.1080/0020739X.2011.622806

    Article  MathSciNet  MATH  Google Scholar 

  5. Charbonnier, P.: Traité de Balistique Extérieure. Librairie Polytechnique, Paris (1904)

    MATH  Google Scholar 

  6. Symon, K.R.: Mechanics, 2nd edn. Addison-Wesley, Reading (1960)

    MATH  Google Scholar 

  7. De Mestre, N.: The Mathematics of Projectiles in Sport. Cambridge University Press, New York (1990)

    Book  Google Scholar 

  8. White, C.: Projectile Dynamics in Sport: Principles and Applications. Routledge, London (2010)

    Book  Google Scholar 

  9. Groetsch, C.W., Cipra, B.: Halley’s comment: projectiles with linear resistance. Math. Mag. 70, 273–280 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Morales, D.A.: Exact expressions for the range and the optimal angle of a projectile with linear drag. Can. J. Phys. 83, 67–83 (2005). https://doi.org/10.1139/p04-072

    Article  Google Scholar 

  11. Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977). https://doi.org/10.1119/1.10903

    Article  Google Scholar 

  12. Aguirre-López, M.A., Almaguer, F.J., Díaz-Hernández, O., Escalera Santos, G.J., Javier Morales-Castillo, J.: On continuous inkjet systems: a printer driver for expiry date labels on cylindrical surfaces. Adv. Comput. Math. 45, 2019–2028 (2019). https://doi.org/10.1007/s10444-019-09682-0

    Article  Google Scholar 

  13. Lubarda, M.V., Lubarda, V.A.: On the motion of an evaporating respiratory droplet. Proc. Monten. Acad. Sci. Arts 25 (2022) (in press). arXiv:2105.09066 [physics.app-ph]

  14. White, F.M.: Viscous Fluid Flow, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  15. Cohen, C., Darbois-Texier, B., Dupeux, G., Brunel, E., Quéré, D., Clanet, C.: The aerodynamic wall. Proc. R. Soc. Lond. A 470, 20130497 (2014). https://doi.org/10.1098/rspa.2013.0497

    Article  Google Scholar 

  16. Khan, A.R., Richardson, J.F.: The resistance to motion of a solid sphere in a fluid. Chem. Eng. Commun. 62(1–6), 135–150 (1987). https://doi.org/10.1080/00986448708912056

    Article  Google Scholar 

  17. Polezhaev, Y.V., Chircov, I.V.: Drag coefficient. Thermopedia (2020). https://doi.org/10.1615/AtoZ.d.drag_coefficient

    Article  Google Scholar 

  18. Ray, S., Fröhlich, J.: An analytic solution to the equations of the motion of a point mass with quadratic resistance and generalizations. Arch. Appl. Mech. 85, 395–414 (2015). https://doi.org/10.1007/s00419-014-0919-x

    Article  Google Scholar 

  19. Parker, G.W.: Projectile motion with air resistance quadratic in the speed. Am. J. Phys. 45, 606–610 (1977). https://doi.org/10.1119/1.10812

    Article  Google Scholar 

  20. Warburton, R.D.H., Wang, J., Burgdörfer, J.: Analytic approximations of projectile motion with quadratic air resistance. J. Serv. Sci. Manag. 3, 98–105 (2010). https://doi.org/10.4236/jssm.2010.31012

    Article  Google Scholar 

  21. Chudinov, P.S.: The motion of a point mass in a medium with a square law of drag. J. Appl. Math. Mech. 65, 421–426 (2001). https://doi.org/10.1016/S0021-8928(01)00047-8

    Article  MATH  Google Scholar 

  22. Chudinov, P.S.: Analytical investigation of point mass motion in midair. Eur. J. Phys. 25, 73–79 (2004). https://doi.org/10.1088/0143-0807/25/1/010

    Article  Google Scholar 

  23. Turkyilmazoglu, M.: Highly accurate analytic formulae for projectile motion subjected to quadratic drag. Eur. J. Phys. 37, 035001 (2016). https://doi.org/10.1088/0143-0807/37/3/035001

    Article  MATH  Google Scholar 

  24. Nathan, A.M.: The effect of spin on the flight of a baseball. Am. J. Phys. 76, 119–124 (2008). https://doi.org/10.1119/1.2805242

    Article  Google Scholar 

  25. Robinson, G., Robinson, I.: The motion of an arbitrarily rotating spherical projectile and its application to ball games. Phys. Scr. 88, 018101 (2013). https://doi.org/10.1088/0031-8949/88/01/018101

    Article  Google Scholar 

  26. Turkyilmazoglu, M., Altundag, T.: Exact and approximate solutions to projectile motion in air incorporating Magnus effect. Eur. Phys. J. Plus 135, 566 (2020). https://doi.org/10.1140/epjp/s13360-020-00593-4

    Article  Google Scholar 

  27. Cross, R.: Vertical bounce of a spinning ball. Phys. Educ. 56, 023002 (2021). https://doi.org/10.1088/1361-6552/abd0d8

    Article  Google Scholar 

  28. Bernardo, R.C., Esguerra, J.P., Vallejos, J.D., Canda, J.J.: Wind-influenced projectile motion. Eur. J. Phys. 36, 025016 (2015). https://doi.org/10.1088/0143-0807/36/2/025016

    Article  Google Scholar 

  29. Ozarslan, R., Bas, E., Baleanu, D., Acay, B.: Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel. AIMS Math. 5, 467–481 (2020). https://doi.org/10.3934/math.2020031

    Article  MathSciNet  MATH  Google Scholar 

  30. Vogel, S.: Living in a physical world II. The bio-ballistics of small projectiles. J. Biosci. 30, 167–175 (2005). https://doi.org/10.1007/BF02703696

    Article  Google Scholar 

  31. Vogel, S.: The bioballistics of small projectiles. In: Glimpses of Creatures in Their Physical Worlds, pp. 18–38. Princeton University Press, Princeton. https://doi.org/10.1515/9781400833863.18

  32. Warburton, R.D.H., Wang, J.: Analysis of asymptotic projectile motion with air resistance using the Lambert function. Am. J. Phys. 72, 1404–1407 (2004). https://doi.org/10.1119/1.1767104

    Article  Google Scholar 

  33. Stewart, S.M.: An analytic approach to projectile motion in a linear resisting medium. Int. J. Math. Educ. Sci. Technol. 37, 411–431 (2006). https://doi.org/10.1080/00207390600594911

    Article  MathSciNet  Google Scholar 

  34. Hu, H., Zhao, Y.P., Guo, Y.J., Zheng, M.Y.: Analysis of linear resisted projectile motion using the Lambert W function. Acta Mech. 223, 441–447 (2012). https://doi.org/10.1007/s00707-011-0571-2

    Article  MathSciNet  MATH  Google Scholar 

  35. Benacka, J.: Simulating projectile motion in the air with spreadsheet. Spreadsheets Educ. (eJSiE) 3, 1–7 (2009)

    Google Scholar 

  36. Grigore, I., Miron, C., Barna, E.S.: Exploring excel spreadsheets to simulate the projectile motion in the gravitational field. Rom. Rep. Phys. 69, 1–14 (2017)

    Google Scholar 

  37. Hackborn, W.W.: Projectile motion: resistance is fertile. Am. Math. Mon. 115, 813–819 (2008)

    Article  MathSciNet  Google Scholar 

  38. Hackborn, W.W.: On motion in a resisting medium: a historical perspective. Am. J. Phys. 84, 127–134 (2016). https://doi.org/10.1119/1.4935896

    Article  Google Scholar 

  39. Watts, R.G., Ferrer, R.: The lateral force on a spinning sphere: aerodynamics of a curveball. Am. J. Phys. 55, 40–44 (1987). https://doi.org/10.1119/1.14969

    Article  Google Scholar 

  40. Smith, L., Sciacchitano, A.: Baseball drag measurements in free flight. Appl. Sci. 12, 1416 (2022). https://doi.org/10.3390/app12031416

    Article  Google Scholar 

  41. Allen, E.J.: Approximate ballistics formulas for spherical pellets in free flight. Def. Technol. 14, 1–11 (2018). https://doi.org/10.1016/j.dt.2017.11.004

    Article  Google Scholar 

  42. Taylor, J.R.: Classical Mechanics. University Science Books, Sausalito (2005)

    MATH  Google Scholar 

  43. Thornton, S.T., Marion, J.B.: Classical Dynamics of Particles and Systems, 5th edn. Brooks Cole, Belmont (2003)

    Google Scholar 

  44. Fowles, G., Cassiday, G.L.: Analytical Mechanics, 7th edn. Thomson Brooks/Cole, Belmont (2005)

    Google Scholar 

  45. Lubarda, M.V., Lubarda, V.A.: Inelastic bouncing of a spherical ball in the presence of quadratic drag with application to sports balls. Proc. IMechE Part P J. Sports Eng. Technol. (2022) (in press)

  46. Lubarda, M.V., Lubarda, V.A.: An analysis of pendulum motion in the presence of quadratic and linear drag. Eur. J. Phys. 42, 055014 (2021). https://doi.org/10.1088/1361-6404/ac1446

    Article  Google Scholar 

  47. Hayen, J.C.: Projectile motion in a resistant medium. Part I: Exact solution and properties. Int. J. Nonlinear Mech. 38, 357–369 (2003). https://doi.org/10.1016/S0020-7462(01)00067-1

    Article  MathSciNet  MATH  Google Scholar 

  48. Rooney, F.J., Eberhard, S.K.: On the ascent and descent times of a projectile in a resistant medium. Int. J. Nonlinear Mech. 46, 742–744 (2011). https://doi.org/10.1016/j.ijnonlinmec.2011.02.007

    Article  Google Scholar 

  49. Munson, B.R., Young, D.F., Okiishi, T.H.: Fundamentals of Fluid Mechanics. Wiley, New York (1990)

    MATH  Google Scholar 

  50. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996). https://doi.org/10.1007/BF02124750

    Article  MathSciNet  MATH  Google Scholar 

  51. Hu, H., Guo, Y.J., Xu, D.Q.: Relationship between the elastic-plastic interface radius and internal pressure of thick-walled cylinders using the Lambert W function. Arch. Appl. Mech. 83, 643–646 (2013). https://doi.org/10.1007/s00419-012-0699-0

    Article  MATH  Google Scholar 

  52. Suzuki, A., Maruoka, N., Oishi, Y., Kawai, H., Nogami, H.: Simulation of powder motion with particle contact model including intervening liquid. ISIJ Int. 60, 1538–1544 (2020). https://doi.org/10.2355/isijinternational.ISIJINT-2020-072

    Article  Google Scholar 

  53. Loth, E., Daspit, J.T., Jeong, M., Nagata, T., Nonomura, T.: Supersonic and hypersonic drag coefficients for a sphere. AIAA J. 59, 3261–3274 (2021). https://doi.org/10.2514/1.J060153

    Article  Google Scholar 

  54. Singh, N., Kroells, M., Li, C., Ching, E., Ihme, M., Hogan, C.J., Schwartzentruber, T.E.: General drag coefficient for flow over spherical particles. AIAA J. 60, 587–597 (2022). https://doi.org/10.2514/1.J060648

    Article  Google Scholar 

  55. Liu, L., Wei, J., Li, Y., Ooi, A.: Evaporation and dispersion of respiratory droplets from coughing. Indoor Air 27, 179–190 (2017). https://doi.org/10.1111/ina.12297

    Article  Google Scholar 

  56. Cheng, C.H., Chow, C.L., Chow, W.K.: Trajectories of large respiratory droplets in indoor environment: a simplified approach. Build. Environ. 183, 107196 (2020). https://doi.org/10.1016/j.buildenv.2020.107196

    Article  Google Scholar 

  57. Wang, H., Li, Z., Zhang, X., Zhu, L., Liu, Y., Wang, S.: The motion of respiratory droplets produced by coughing. Phys. Fluids 32, 125102 (2020). https://doi.org/10.1063/5.0033849

    Article  Google Scholar 

  58. Lieber, C., Melekidis, S., Koch, R., Bauer, H.J.: Insights into the evaporation characteristics of saliva droplets and aerosols: levitation experiments and numerical modeling. J. Aerosol Sci. (2021). https://doi.org/10.1016/j.jaerosci.2021.105760

    Article  Google Scholar 

  59. Wegener, M., Paul, N., Kraume, M.: Fluid dynamics and mass transfer at single droplets in liquid/liquid systems. Int. J. Heat Mass Transf. 71, 475–495 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.024

    Article  Google Scholar 

  60. Brackenbury, J., Wang, R.: Ballistics and visual targeting in flea-beetles (Alticinae). J. Exp. Biol. 198, 1931–1942 (1995). https://doi.org/10.1242/jeb.198.9.1931

    Article  Google Scholar 

  61. Nadein, K., Betz, O.: Jumping mechanisms and performance in beetles. I. Flea beetles (Coleoptera: Chrysomelidae: Alticini). J. Exp. Biol. 219, 2015–2027 (2016). https://doi.org/10.1242/jeb.140533

    Article  Google Scholar 

  62. Smits, A.J., Ogg, S.: Aerodynamics of the golf ball. In: Hung, G.K., Pallis, J.M. (eds.) Biomedical Engineering Principles in Sports. Bioengineering, Mechanics, and Materials: Principles and Applications in Sports, vol. 1. Springer, Boston (2004)

    Chapter  Google Scholar 

  63. Escalera Santos, G.J., Aguirre-López, M.A., Díaz-Hernández, O., Hueyot-Zahuantitla, F., Morales-Castillo, J., Almaguer, F.-J.: On the aerodynamic forces on a baseball, with applications. Front. Appl. Math. Stat. 4, 66 (2019). https://doi.org/10.3389/fams.2018.00066

    Article  Google Scholar 

  64. Chudinov, P.S.: An optimal angle of launching a point mass in a medium with quadratic drag force, pp. 1–8. arXiv:physics/0506201 [physics.class-ph] (2005)

  65. Linn, M.C., Palmer, E., Baranger, A., Gerard, E., Stone, E.: Undergraduate research experiences: impacts and opportunities. Science 347(6222), 1261757 (2015). https://doi.org/10.1126/science.1261757

    Article  Google Scholar 

  66. Parker, J.: Undergraduate research, learning gain and equity: the impact of final year research projects. High. Educ. Pedagog. 3, 145–157 (2018). https://doi.org/10.1080/23752696.2018.1425097

    Article  Google Scholar 

Download references

Acknowledgements

Valuable comments and suggestions by anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko V. Lubarda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubarda, M.V., Lubarda, V.A. A review of the analysis of wind-influenced projectile motion in the presence of linear and nonlinear drag force. Arch Appl Mech 92, 1997–2017 (2022). https://doi.org/10.1007/s00419-022-02173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02173-7

Keywords

Navigation