Skip to main content
Log in

Linear and nonlinear stability of thermal convection in Newtonian dielectric liquid with field-dependent viscosity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present study deals with a linear and weakly nonlinear stability analyses of thermal convection in a variable viscosity Newtonian dielectric liquid. The generalised Lorenz model is obtained by using the Galerkin method. Using this model, the Nusselt number is calculated in the regular (non-chaotic) regime and onset of chaotic motion is also studied. Temperature dominance over an electric field dominance in influencing viscosity is shown to hasten onset of convection and to thereby enhance the heat transport. Electric field dominance can be used to delay thermal convection and thereby to diminish heat transport. The effect of electric Rayleigh number is to diminish the Nusselt number and its effect on chaotic motion is to advance onset. Subcritical instability is shown to be possible in the system. The dielectric liquid plays an important role in thermal systems like transformers that require a coolant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a :

Wave number

\(\mathbf{D} \) :

Electric displacement

\(\mathbf{E} \) :

Electric field

\(\mathbf{E} _{\mathbf{0}}\) :

Reference electric field

\(\mathbf{g} \) :

Gravitational acceleration \((0, 0,-g)\)

\(\mathbf{P} \) :

Dielectric polarisation

\(\mathbf{q} \) :

Velocity vector components (u, 0, w)

e :

Positive free charge

Pr:

Prandtl number

L :

Electric Rayleigh number

p :

Effective pressure

Nu:

Nusselt number

T :

Temperature

\(V_\mathrm{T}\) :

Temperature-dependent variable viscosity

\(V_\mathrm{E}\) :

Electric field-dependent variable viscosity

R :

Rayleigh number

\(R_\mathrm{s}\) :

Stationary Rayleigh number

r :

Scaled Rayleigh number

t :

Scaled time

\(\alpha \) :

Thermal expansion coefficient

\( \varepsilon _{0}\) :

Electric permittivity

\( \varepsilon _\mathrm{r}\) :

Relative permittivity

\( \kappa _{1} \) :

Thermal diffusivity

\( \phi \) :

Electric potential

\(\mu \) :

Temperature- and electric field-dependent viscosity

\(\tau \) :

Non-dimensional time

\(\psi \) :

Dimensionless stream function

\(\rho \) :

Fluid density

\(\chi _\mathrm{e}\) :

Electric susceptibility

b :

Basic state

c :

Critical quantity at \(T = T_{0}\)

0:

Reference value

Tr :

Transpose

’:

Dimensional perturbed quantity

*:

Dimensionless perturbed quantity

References

  1. R.J. Turnbull, Phys. Fluids 11, 2588–2612 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  2. R.J. Turnbull, Phys. Fluids 12, 1809–1815 (1969)

    Article  ADS  Google Scholar 

  3. P.H. Roberts, Quart. J. Mech. Appl. Math. 22, 211–220 (1969)

    Article  Google Scholar 

  4. M. Takashima, Can. J. Phys. 54, 342–347 (1976)

    Article  ADS  Google Scholar 

  5. R. Bradley, Quart. J. Mech. Appl. Math. 31, 381–390 (1978)

    Article  Google Scholar 

  6. M. Takashima, A.K. Ghosh, J. Phys. Soc. Jpn. 47, 1717–1722 (1979)

    Article  ADS  Google Scholar 

  7. S. Oliveri, P. Atten, I.E.E.E. Trans, Ind. Appl. IA–20, 699–704 (1985)

    Article  Google Scholar 

  8. H.J. Ko, M.U. Kim, J. Phys. Soc. Jpn. 357, 1650–1661 (1988)

    Article  ADS  Google Scholar 

  9. P.J. Stiles, Chem. Phys. Lett. 179, 311–315 (1991)

    Article  ADS  Google Scholar 

  10. T. Maekawa, K. Abe, I. Tanasawa, Int. J. Heat Mass Transf. 35, 613–621 (1992)

    Article  Google Scholar 

  11. P.J. Stiles, M. Kagan, J. Magn. Magn. Mater. 85, 196–198 (1990)

    Article  ADS  Google Scholar 

  12. M.F. Haque, E.D. Mshelia, S. Arajas, J. Phys. D Appl. Phys. 26, 2132–2136 (1993)

    Article  ADS  Google Scholar 

  13. M.I. Char, K.T. Chiang, Appl. Sci Res. 52, 331–339 (1994)

    Article  ADS  Google Scholar 

  14. M.F. Haque, S. Arajas, J. Fizik. 16, 109–115 (1995)

    Google Scholar 

  15. M.A.K. El Adawi, S.F. El Shehawey, S.A. Shalaby, M.I.A. Othman, Can. J. Phys. 25, 299–310 (1996)

    Google Scholar 

  16. M.A.K. El Adawi, S.F. El Shehawey, S.A. Shalaby, M.I.A. Othman, J. Phys. Soc. Jpn. 66, 2479–2484 (1997)

    Google Scholar 

  17. B.L. Smorodin, M.G. Velarde, J. Electrostat. 48, 261–277 (2000)

    Article  Google Scholar 

  18. B.L. Smorodin, Fluid Dyn. 36, 548–555 (2001)

    Article  Google Scholar 

  19. M.I.A. Othman, S. Zaki, Can. J. Phys. 81, 779–787 (2003)

    Article  ADS  Google Scholar 

  20. P.G. Siddheshwar, A. Abraham, Proc. Appl. Math. Mech. 7(1), 2100083–21300084 (2007)

    Article  Google Scholar 

  21. I.S. Shivakumara, M.S. Nagashree, K. Hemalatha, Int. Commun. Heat Mass Transf. 34, 1041–1047 (2007)

    Article  Google Scholar 

  22. P.G. Siddheshwar, A. Abraham, Chamchuri J. Math. 1(2), 105–121 (2009)

    MathSciNet  Google Scholar 

  23. P.G. Siddheshwar, D. Radhakrishna, J. Commun. Nonlinear Sci. Numer. Simul. 17, 2883–2895 (2012)

    Article  ADS  Google Scholar 

  24. D.L. Klass, T.W. Martinek, J. Appl. Phys. 38, 67–74 (1967)

    Article  ADS  Google Scholar 

  25. S. Shin, Y.I. Chao, Int. Commun. Heat Mass Transf. 23, 731–744 (1996)

    Article  Google Scholar 

  26. H. Ma, W. Wen, W.Y. Tam, P. Sheng, Adv. Phys. 52, 343–383 (2003)

    Article  ADS  Google Scholar 

  27. K.C. Stengel, D.S. Oliver, J.R. Booker, J. Fluid Mech. 120, 411–431 (1982)

    Article  ADS  Google Scholar 

  28. R. Selak, G. Lebon, J. Phys. II(3), 1185–1199 (1993)

    Google Scholar 

  29. R. Selak, G. Lebon, Int. J. Heat Mass Transf. 40, 785–798 (1997)

    Article  Google Scholar 

  30. S. Chakraborty, A.K. Borkakati, Theor. Appl. Mech. 27, 49–61 (2002)

    Article  Google Scholar 

  31. P.G. Siddheshwar, D. Uma, S. Bhavya, Appl. Math. Mech. Engl. Ed. 40(11), 1601–1614 (2019)

    Article  Google Scholar 

  32. E.N. Lorenz, J. Atom. Sci. 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  33. D. Laroze, P.G. Siddheshwar, H. Pleiner, J. Commun. Nonlinear Sci. Numer Simul. 18, 2436–2447 (2013)

    Article  ADS  Google Scholar 

  34. P.G. Siddheshwar, G.N. Sekhar, G. Jayalatha, J. Non-Newt, Fluid Mech. 165, 1412–1418 (2010)

    Google Scholar 

  35. C. Kanchana, Y. Zhao, P.G. Siddheshwar, Phys. Fluids 30, 084101-1–084101-14 (2018)

    ADS  Google Scholar 

  36. P.G. Siddheshwar, K.M. Lakshmi, Phys. Fluids 31, 084102-1–084102-19 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewer for valuable suggestions that helped them in bringing the paper to the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavya Shivaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddheshwar, P.G., Uma, D. & Shivaraj, B. Linear and nonlinear stability of thermal convection in Newtonian dielectric liquid with field-dependent viscosity. Eur. Phys. J. Plus 135, 138 (2020). https://doi.org/10.1140/epjp/s13360-020-00224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00224-y

Navigation