Skip to main content
Log in

New measurement of residual cross sections from \({\alpha }{+}^{93}\)Nb reaction: a comparative study of PEQ models and nuclear level densities

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An experimental study of the \({\alpha }{+}^{93}\)Nb reaction has been accomplished within 7–12.5 MeV/nucleon energy. A systematic study of the preequilibrium (PEQ) emission of particles over the compound evaporations has been carried out using the model codes—TALYS1.8 and Alice14. The measured cross sections of \(^{96g,95m+g,94m+g,93g}\hbox {Tc}\), \(^{93m}\hbox {Mo}\) and \(^{92m,90g}\hbox {Nb}\) are found to agree with other reported data within the estimated uncertainties and are grossly reproduced by the theoretical calculations. The variation of isomeric cross-sectional ratio (ICR) of \(^{96,95,94}\hbox {Tc}\) has been examined up to 100 MeV projectile energy. Additionally, a quantitative analysis of the extent of agreement between measured and theoretical data has been performed for different nuclear level densities using F-deviation factor, which is calculated considering those energies for which experimental cross section is known. Comparison of the measured and theoretical results as well as ICR analysis demonstrates the occurrence of PEQ process in the high-energy tail of excitation functions in all channels, where the compound reaction has a negligible effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Yiğit, E. Tel, İ.H. Sarpün, Nucl. Instrum. Methods Phys. Res. B 385, 59 (2016)

    Google Scholar 

  2. K. Kim, G.N. Kima, H. Naik, M. Zaman, S.C. Yang, T.Y. Song, R. Guin, S.K. Das, Nucl. Phy. A 935, 65 (2015). and reference therein

    Google Scholar 

  3. The thin layer activation method and its application in industry, IAEA TECDOC-924, IAEA, Vienna, Austria (1997)

  4. E. Daum, in Proceedings of the Second Milestone Meeting of European Laboratories on the Development of Ferritic/ Martensitic Steels for Fusion Technology, Karlsruhe, 9–10 September 1996, FZKA Wissenschaftliche Berichte, FZKA 5848, Karlsruhe, p. 6 (1997)

  5. M. Maiti, S. Lahiri, Phys. Rev. C 81, 024603 (2010)

    Google Scholar 

  6. D. Kumar, M. Maiti, S. Lahiri, Phys. Rev. C 94, 044603 (2016)

    Google Scholar 

  7. D. Kumar, M. Maiti, Phys. Rev. C 95, 064602 (2017)

    Google Scholar 

  8. D. Kumar, M. Maiti, Acta Physica Polonica B 48, 687 (2018)

    Google Scholar 

  9. J. Ernst, R. Ibowski, H. Klampfl, H. Machner, T. Mayer-Kuckuk, R. Schanz, Z. Phys. A 308, 301 (1982)

    Google Scholar 

  10. J. Rama Rao, A.V. Mohan Rao, S. Mukherjee, R. Upadhyay, N.L. Singh, S. Agarwal, L. Chaturvedi, P.P. Singh, J. Phys. G 13, 535 (1987)

    Google Scholar 

  11. N.L. Singh, S. Agarwal, J. Rama Rao, J. Phys. Soc. Jpn. 59, 3916 (1990)

    Google Scholar 

  12. V.N. Levkovsky, V.F. Reutov, K.V. Botvin, Sov. At. Energy 69, 661 (1991)

    Google Scholar 

  13. S. Mukherjee, N.L. Singh, A.V. Mohan Rao, L. Chaturvedi, P.P. Singh, Phys. Scr. 55, 409 (1997)

    Google Scholar 

  14. F. Tarkanyi, F. Ditroi, F. Szelecsenyi, M. Sonck, A. Hermanne, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 198, 11 (2002)

    Google Scholar 

  15. A. Agarwal, I.A. Rizvi, A.K. Chaubey, Phys. Rev. C 65, 034605 (2002)

    Google Scholar 

  16. M.K. Sharma, H.D. Bhardwaj, O. Unnati, P.P. Singh, B.P. Singh, R. Prasad, Eur. Phys. J. A 31, 43 (2007)

    Google Scholar 

  17. C.S. Palshetkar, S. Santra, A. Chatterjee, K. Ramachandran, S. Thakur, S.K. Pandit, K. Mahata, A. Shrivastava, V.V. Parkar, V. Nanal, Phys. Rev. C 82, 044608 (2010)

    Google Scholar 

  18. F.K. Amanuel, B. Zelalem, A.K. Chaubey, Avinash Agarwal, I.A. Rizvi, Chin. J. Phys. 49, 884 (2011)

    Google Scholar 

  19. L.F. Canto, P.R.S. Gomes, R. Donangelo, J. Lubian, M.S. Hussein, Phys. Rep. 596, 1 (2015). and reference therein

    Google Scholar 

  20. D. Kumar, M. Maiti, S. Lahiri, Phys. Rev. C 96, 014617 (2017)

    Google Scholar 

  21. D. Kumar, M. Maiti, Phys. Rev. C 96, 044624 (2017)

    Google Scholar 

  22. T. Matsuo, J.M. Matuszek, N.D. Dudey, T.T. Sugihara, Phys. Rev. 139, B886 (1965)

    Google Scholar 

  23. C.L. Branquinho, S.M.A. Hoffmann, G.W.A. Newton, V.J. Robinson, H.Y. Wong, I.S. Grant, J.A.B. Goodall, J. Inorg. Nucl. Chem. 41, 617 (1979)

    Google Scholar 

  24. S. Mukherjee, N.L. Singh, G.K. Kumar, L. Chaturvedi, Phys. Rev. C 72, 014609 (2005)

    Google Scholar 

  25. N. Ramamurthy, M.K. Das, B.R. Sarkar, R.S. Mani, J. Radioanal. Nucl. Chem. 98, 121 (1986)

    Google Scholar 

  26. S.K. Singh, L. Chaturvedi, Indian J. Phys. Part A 70, 155 (1996)

    Google Scholar 

  27. M. Blann, Phys. Rev. C 54, 1341 (1996)

    Google Scholar 

  28. https://rsicc.ornl.gov/codes/psr/psr5/psr-550.html

  29. www.talys.eu/fileadmin/talys/user/docs/talys1.8.pdf

  30. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)

    Google Scholar 

  31. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/

  32. B. Wilke, T.A. Fritz, Nucl. Instrum. Methods 138, 331 (1976)

    Google Scholar 

  33. J. Kemmer, R. Hofmann, Nucl. Instrum. Methods 176, 543 (1980)

    Google Scholar 

  34. C. Kalbach, Phys. Rev. C 33, 818 (1986)

    Google Scholar 

  35. M. Maiti, S. Lahiri, Phys. Rev. C 79, 024611 (2009)

    Google Scholar 

  36. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Google Scholar 

  37. C. Kalbach, Phys. Rev. C 71, 034606 (2005)

    Google Scholar 

  38. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)

    Google Scholar 

  39. S. Watanabe, Nucl. Phys. 8, 484 (1958)

    Google Scholar 

  40. M. Blann, M.B. Chadwick, Phys. Rev. C 57, 233 (1998)

    Google Scholar 

  41. T.D. Thomas, Phys. Rev. 116, 703 (1959)

    Google Scholar 

  42. https://www.nndc.bnl.gov/exfor/exfor.htm

  43. C.H.M. Broeders, A.Y. Konobeyev, M. Blann, A.Y. Korovin, V.P. Lunev, FZKA-7183, Germany (2006)

  44. C.H.M. Broeders, AYu. Konobeyev, Nucl. Inst. Methods Phys. Res. A 550, 241 (2005)

    Google Scholar 

  45. R. Michel et al., Nucl. Inst. Methods Phys. Res. B 129, 153 (1997)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the help and cooperation received from the Cyclotron staff, target laboratory staff of the Variable Energy Cyclotron Centre, India, during the experiment. The fellowship from MHRD, Government of India, is acknowledged by DK. Research grants from SERB-DST SR/FTP/PS-111/2013 and SINP-DAE five-year plan project TULIP are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Maiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Maiti, M. & Lahiri, S. New measurement of residual cross sections from \({\alpha }{+}^{93}\)Nb reaction: a comparative study of PEQ models and nuclear level densities. Eur. Phys. J. Plus 135, 176 (2020). https://doi.org/10.1140/epjp/s13360-020-00152-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00152-x

Navigation