Skip to main content
Log in

Fractional generalized Kuramoto-Sivashinsky equation: Formulation and solution

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, the fractional generalized Kuramoto-Sivashinsky (FGKS) equation is derived using the semi-inverse technique. The FGKS equation is familiar and often occurs in nature. It can be used to describe traveling waves in dispersive media, such as plasma and porous media. An efficient modified \( G^{\prime}/G\)-expansion method is presented to solve the FGKS equation. We investigate the effect of the space fractional parameter on the propagation of traveling waves. Our results show that the traveling wave shape can be modulated using the space fractional parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, NewYork, 1998)

  2. A. Nazari-Golshan, Indian J. Phys. 92, 1643 (2018)

    Article  ADS  Google Scholar 

  3. A. Nazari-Golshan, Phys. Plasmas 23, 082109 (2016)

    Article  ADS  Google Scholar 

  4. F. Ferdous, M.G. Hafeza, Eur. Phys. J. Plus 133, 384 (2018)

    Article  Google Scholar 

  5. O. Guner, A. Korkmaz, A. Bekir, Commun. Theor. Phys. 68, 182 (2017)

    Article  ADS  Google Scholar 

  6. A. Korkmaz, Commun. Theor. Phys. 67, 479 (2017)

    Article  ADS  Google Scholar 

  7. M. Karkulik, Comput. Math. Appl. 75, 3929 (2018)

    Article  MathSciNet  Google Scholar 

  8. S. Guo, L. Mei, Z. Zhang, Phys. Plasmas 22, 052306 (2015)

    Article  ADS  Google Scholar 

  9. S.S. Nourazar, A. Nazari-Golshan, F. Soleymanpour, Sci. Rep. 8, 16358 (2018)

    Article  ADS  Google Scholar 

  10. A. Nazari-Golshan, S.S. Nourazar, Phys. Plasmas 20, 103701 (2013)

    Article  ADS  Google Scholar 

  11. S.S. Nourazar, A. Nazari-Golshan, A. Yildirim, M. Nourazar, Z. Naturforsch. 67a, 355 (2012)

    Article  ADS  Google Scholar 

  12. A. Bashan, Mediterr. J. Math. 16, 14 (2019)

    Article  MathSciNet  Google Scholar 

  13. A.H. Bhrawy, M.A. Zaky, D. Baleanu, Rom. Rep. Phys. 67, 1 (2015)

    Google Scholar 

  14. Z. Odibat, S. Momani, Appl. Math. Lett. 21, 194 (2008)

    Article  MathSciNet  Google Scholar 

  15. S.S. Nourazar, M. Soori, A. Nazari-Golshan, Aust. J. Basic Appl. Sci. 5, 1400 (2011)

    Google Scholar 

  16. S.S. Nourazar, A. Nazari-Golshan, Indian J. Phys. 89, 61 (2015)

    Article  ADS  Google Scholar 

  17. N.A. Kudryashov, Phys. Lett. A 147, 287 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Lakestani, M. Dehghan, Appl. Math. Model. 36, 605 (2012)

    Article  MathSciNet  Google Scholar 

  19. C.T. Djeumen Tchaho, H.M. Omanda, D. Belobo, Eur. Phys. J. Plus 133, 387 (2018)

    Article  Google Scholar 

  20. J. Topper, T. Kawahara, J. Phys. Soc. Jpn. 44, 663 (1987)

    Article  ADS  Google Scholar 

  21. B.I. Cohen, J.A. Krommes, W.M. Tang, M.N. Rosenbluth, Nucl. Fusion 16, 971 (1976)

    Article  ADS  Google Scholar 

  22. V.N. Nicolaevsky, Dokl. Akad. Nauk SSSR 283, 1321 (1985)

    Google Scholar 

  23. M.L. Wang, X.Z. Li, J.L. Zhang, Phys. Lett. A 372, 417 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Zhang, J.L. Tong, W. Wang, Phys. Lett. A 372, 2254 (2008)

    Article  ADS  Google Scholar 

  25. J.H. He, Int. J. Turbo Jet-Eng. 14, 23 (1997)

    ADS  Google Scholar 

  26. S.I. Muslih, O. Agrawal, Int. J. Theor. Phys. 49, 270 (2010)

    Article  Google Scholar 

  27. O.P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002)

    Article  MathSciNet  Google Scholar 

  28. O.P. Agrawal, J. Phys. A 39, 10375 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. O.P. Agrawal, Nonlinear Dyn. 38, 323 (2004)

    Article  Google Scholar 

  30. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

    Chapter  Google Scholar 

  31. T. Tatsumi (Editor), Turbulence and Chaotic Phenomena in Fluids (North Holland, 1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Nazari-Golshan.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari-Golshan, A. Fractional generalized Kuramoto-Sivashinsky equation: Formulation and solution. Eur. Phys. J. Plus 134, 565 (2019). https://doi.org/10.1140/epjp/i2019-12948-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12948-7

Navigation