Skip to main content
Log in

Investigation of cylindrical shock waves in dusty plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Electronegative dusty plasma composed of Boltzmann electrons, Boltzmann negative ions, inertial positive ions and charge fluctuating dust has been considered. The fractional modified Burgers’ (FMB) equation, which is derived using Euler–Lagrange variational technique, is analytically obtained and solved for studying the cylindrical geometry effect on the propagation of the dust ion acoustic shock wave. The Laplace homotopy perturbation method, the so-called LHPM is applied to solve the FMB equation. The effect of the fractional parameter, positive ion number density at equilibrium, the number of equilibrium electrons residing on the dust grain surface and shock velocity on the behavior of the shock waves in the dusty plasma has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P K Shukla and V P Silin Phys. Scr. 45 508 (1992)

    Article  ADS  Google Scholar 

  2. A Barkan N D’Angelo and R L Merlino Planet. Space Sci. 44 239 (1996)

    Article  ADS  Google Scholar 

  3. P Borah D Gogoi and N Das Phys. Scr. 91 015603 (2016)

    Article  ADS  Google Scholar 

  4. D-N Gao Y R Ma Y Yang J Zhang and W-S Duan Indian J. Phys. 90 1313 (2016)

    Article  ADS  Google Scholar 

  5. M A H Khaled Indian J. Phys. 88 647 (2014)

    Article  ADS  Google Scholar 

  6. [6] A Saha and P Chatterjee Braz. J. Phys. 45 (4) 419 (2015)

    Article  ADS  Google Scholar 

  7. A Saha and P Chatterjee Phys. Plasmas 20 (2) 022111 (2013)

    Article  ADS  Google Scholar 

  8. G Mandal K Roy and P Chatterjee Indian J. Phys. 83 365 (2009)

    Article  ADS  Google Scholar 

  9. N N Rao P K Shukla and M Y Yu Planet. Space Sci. 38 543 (1990)

    Article  ADS  Google Scholar 

  10. A Barkan R L Merlino and N D’Angelo Phys. Plasmas 2 3563 (1995)

    Article  ADS  Google Scholar 

  11. H Alinejad Phys. Lett. A 375 1005 (2011)

    Article  ADS  Google Scholar 

  12. S K El-Labany W F El-Taibany and M Mahmoud Phys. Scr. 87 055502 (2013)

    Article  ADS  Google Scholar 

  13. P K Shukla and A A Mamun Introduction to Dusty Plasma Physics (Bristol: Institute of Physics Publishing Ltd.) (2002)

    Book  Google Scholar 

  14. A A Mamun P K Shukla and B Eliasson Phys. Plasmas 16 114503 (2009)

    Article  ADS  Google Scholar 

  15. S H Kim and R L Merlino Phys. Plasmas 13 052118 (2006)

    Article  ADS  Google Scholar 

  16. M Rosenberg R L Merlino Planet. Space Sci. 55 1464 (2007)

    Article  ADS  Google Scholar 

  17. A A Mamun R A Cairns and P K Shukla Phys. Lett. A 373 2355 (2009)

    Article  ADS  Google Scholar 

  18. M Larsson W D Geppert and G Nyman Rep. Prog. Phys. 75 066901 (2012)

    Article  ADS  Google Scholar 

  19. E C Whipple T G Northrop D A Mendis and J. Geophys. Res. 90 7405 (1985)

    Article  ADS  Google Scholar 

  20. P K Shukla and B Eliasson Rev. Mod. Phys. 81 25 (2009)

    Article  ADS  Google Scholar 

  21. G E Morfill and A V Ivlev Rev. Mod. Phys. 81 1353 (2009)

    Article  ADS  Google Scholar 

  22. A A Mamun P K Shukla and B Eliasson Phys. Rev. E 80 046406 (2009)

    Article  ADS  Google Scholar 

  23. A A Mamun and S Tasnim Phys. Plasmas 17 073704 (2010)

    Article  ADS  Google Scholar 

  24. M S Zobaer, K N Mukta, L Nahar, N Roy and A A Mamun Phys. Plasmas 20 043704 (2013)

    Article  ADS  Google Scholar 

  25. S A El-Wakil, E M Abulwafa, E K El-Shewy and A A Mahmoud Phys. Plasmas 18 092116 (2011).

    Article  ADS  Google Scholar 

  26. S Guo, L Mei and Z Zhang Phys. Plasmas 22 052306 (2015)

    Article  ADS  Google Scholar 

  27. A Nazari-golshan and S S Nourazar Phys. Plasmas 20 103701 (2013)

    Article  ADS  Google Scholar 

  28. A Nazari-golshan, S S Nourazar, P Parvin and H Ghafoori-Fard Astrophys. Space Sci. 349 205 (2014)

    Article  ADS  Google Scholar 

  29. S A El-Wakil, E M Abulwafa, A Elgarayhi, E K El-Shewy, A A Mahmoud and A M Tawfik Astrophys Space Sci. 350 591 (2014)

    Article  ADS  Google Scholar 

  30. A Nazari-golshan Phys. Plasmas 23 082109 (2016)

    Article  ADS  Google Scholar 

  31. H Schamel J. Plasma Phys. 9 377 (1973)

    Article  ADS  Google Scholar 

  32. S Maxon and J Vievelli Phys. Rev. Lett. 32 4 (1974)

    Article  ADS  Google Scholar 

  33. O P Agrawal J. Math. Anal. Appl. 337 1 (2008)

    Article  MathSciNet  Google Scholar 

  34. S I Muslih and O P Agrawal Int. J. Theor. Phys. 49 270 (2010)

    Article  Google Scholar 

  35. O P Agrawal J. Phys. A Math. Theor. 40 6287 (2007)

  36. S G Samko, A A Kilbas and O I Marichev Fractional Integrals and Derivatives: Theory and Applications (New York: Gordon and Breach) (1998)

    MATH  Google Scholar 

  37. I Podlubny Fractional Differential Equations (Academic Press, San Diego) (1999)

    MATH  Google Scholar 

  38. S S Nourazar M Soori and A Nazari-Golshan Aust. J. Basic Appl. Sci. 5 1400 (2011)

    Google Scholar 

  39. A Nazari-Golshan, S S Nourazar, H Ghafoori-Fard, A Yildirim and A Campo Appl. Math. Lett. 26 1018 (2013)

    Article  MathSciNet  Google Scholar 

  40. S S Nourazar A Nazari-Golshan Indian J. Phys. 89 61 (2015)

    Article  ADS  Google Scholar 

  41. G Adomian, Solving Frontier Problems of Physics: The Decomposition Method (Boston: Kluwer) (1994)

    Book  Google Scholar 

  42. S S Nourazar, A Nazari-Golshan, A Yildirim and M Nourazar Z. Naturforsch. 67a 355 (2012)

    ADS  Google Scholar 

  43. J H He Commun. Nonlinear Sci. Numer. Simul. 2 230 (1997)

    Article  ADS  Google Scholar 

  44. S S Nourazar A Nazari-Golshan and M Nourazar Phys. Int. 2 8 (2011)

    Article  Google Scholar 

  45. Z Zhang Turk. J. Phys. 32 235 (2008)

    Google Scholar 

  46. Z Zhang, Y Li, Z Liu and X Miao Commun. Nonlinear Sci. Numer. Simul. 16 (8) 3097 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  47. Z Zhang, Z Liu, X Miao and Y Chen Phys. Lett. A 375 1275 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  48. Z Zhang, X Gan, and D Yu Z. Naturforsch. 66a 721 (2011)

    ADS  Google Scholar 

  49. Z Zhang, F Xia and X Li Pramana 80 (1) 41(2013)

    Article  ADS  Google Scholar 

  50. X Miao and Z Zhang Commun. Nonlinear Sci. Numer. Simul. 16 (11) 4259 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  51. Z Zhang, J Huang, J Zhong, S Dou, J Liu, D Peng and T Gao Pramana 82 (6) 1011 (2014)

    Article  ADS  Google Scholar 

  52. Z Zhang and J Wu Opt. Quantum Electron. 49 1 (2017)

    Article  Google Scholar 

  53. Z Zhang, J Huang, J Zhong, S S Dou, J Liu, D Peng and T Gao Rom. J. Phys. 58 (7) 749 (2013)

    Google Scholar 

  54. Z Zhang Rom. J. Phys. 9 1384 (2015)

    Google Scholar 

  55. Z Zhang, X Gan, D Yu, Y Zhang and X Li Commun. Theor. Phys. 57 764 (2012)

    Article  ADS  Google Scholar 

  56. Z Zhang Turk. J. Phys. 37 259 (2013)

    Google Scholar 

  57. Z Zhang, Y Zhang, X Gan and D Yu Zeitschrift fur Naturforschung 67a 167 (2012).

    ADS  Google Scholar 

  58. Z Zhang, Z Liu, X Miao and Y Chen Appl. Math. Comput. 216 3064 (2010)

    MathSciNet  Google Scholar 

  59. Z Zhang, J Huang, J Zhong, S S Dou, J Liu, D Peng and T Gao Rom. J. Phys. 65 (4) 1155 (2013)

    Google Scholar 

  60. A J Coates, F J Crary, G R Lewis, D T Young, J H Waiter and E C Sittler Geophys. Res. Lett. 34 L22103 (2007)

    Article  ADS  Google Scholar 

  61. G Adomian Nonlinear Stochastic Operator Equations. (San Diego: Academic Press) (1986)

    MATH  Google Scholar 

  62. J H He Int. J. Turbo Jet-Engines 14 23 (1997)

    ADS  Google Scholar 

  63. J H He Chaos Solitons Fractals 19 847 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nazari-Golshan.

Appendices

Appendix A: Fractional modified Burgers’ equation solution

The general form of one-dimensional nonlinear partial differential equations is considered to illustrate the basic idea of Laplace transform homotopy perturbation method:

$$ L\left( {u\left( {x,t} \right)} \right) + N\left( {u\left( {x,t} \right)} \right) = g\left( x \right). $$
(A1)

where \( L \) and \( N \) denote a linear and a nonlinear operators respectively. We construct a homotopy as follows:

$$ L\left( {u\left( {x,t} \right)} \right) + pN\left( {u\left( {x,t} \right)} \right) = g\left( x \right). $$
(A2)

Taking the Laplace transform from both sides of Eq. (A2):

$$ {\mathcal{L}}\left\{ {L\left( {u\left( {x,t} \right)} \right)} \right\} + p{\mathcal{L}}\left\{ {N\left( {u\left( {x,t} \right)} \right)} \right\} = {\mathcal{L}}\left\{ {g\left( x \right)} \right\}. $$
(A3)

where \( {\mathcal{L}} \) denotes the Laplace transform.

For the linear and nonlinear operators in Eq. (A3), the concept of the homotopy perturbation method with embedding parameter \( p \) is used to generate a series expansion for \( L\left( {u\left( {x,t} \right)} \right) \) and \( N\left( {u\left( {x,t} \right)} \right) \) as follows [41, 61]:

$$ \begin{aligned} L\left( {u\left( {x,t} \right)} \right) & = L\left( {\mathop \sum \limits_{i = 0}^{\infty } p^{i} u_{i} } \right), \\ N\left( {u\left( {x,t} \right)} \right) & = \mathop \sum \limits_{i = 0}^{\infty } p^{i} H_{i} , \\ \end{aligned} $$
(A4)

where, the components \( u_{i} , i \ge 0 \) are to be determined in a recursive manner, the Adomian polynomials, \( H_{i} \), are expressed as:

$$ H_{i} = \frac{1}{i!}\frac{{d^{i} }}{{d\lambda^{i} }}\left[ {N\left( {\mathop \sum \limits_{j = 0}^{n} \lambda^{j} v_{j} } \right)} \right]_{\lambda = 0} , $$
(A5)

By substituting Eq. (A4) into Eq. (A3):

$$ {\mathcal{L}}\left\{ {L\left( {\mathop \sum \limits_{i = 0}^{\infty } p^{i} u_{i} } \right)} \right\} + {\mathcal{L}}\left\{ {\mathop \sum \limits_{i = 0}^{\infty } p^{i + 1} H_{i} } \right\} = {\mathcal{L}}\left( {g\left( x \right)} \right), $$
(A6)

On the other hand, Eq. (A6) can be rewritten in the following manner:

$$ \mathop \sum \limits_{i = 0}^{\infty } p^{i} {\mathcal{L}}\left\{ {L(u_{i} )} \right\} + \mathop \sum \limits_{i = 0}^{\infty } p^{i + 1} {\mathcal{L}}\left\{ { H_{i} } \right\} = {\mathcal{L}}\left( {g\left( x \right)} \right), $$
(A7)

Using Eq. (A7), we introduce the recursive relations as:

$$ \begin{aligned} & p^{0} : {\mathcal{L}}\left\{ {L\left( {u_{0} } \right)} \right\} = {\mathcal{L}}\left\{ g \right\}, \\ & p^{1} : {\mathcal{L}}\left\{ {L\left( {u_{1} } \right)} \right\} + {\mathcal{L}}\left\{ {H_{0} } \right\} = 0, \\ & p^{2} : {\mathcal{L}}\left\{ {L\left( {u_{2} } \right)} \right\} + {\mathcal{L}}\left\{ {H_{1} } \right\} = 0, \\ & p^{3} : {\mathcal{L}}\left\{ {L\left( {u_{3} } \right)} \right\} + {\mathcal{L}}\left\{ {H_{2} } \right\} = 0, \\ & \vdots \\ & p^{k} : {\mathcal{L}}\left\{ {L\left( {u_{k} } \right)} \right\} + {\mathcal{L}}\left\{ {H_{k - 1} } \right\} = 0, \\ \end{aligned} $$
(A8)

Using the Maple symbolic code, the first part of Eq. (A8), \( p^{0} \), gives the value of \( {\mathcal{L}}\left\{ {u_{0} } \right\} \). First, applying the inverse Laplace transform to \( {\mathcal{L}}\left\{ {u_{0} } \right\} \) gives the value of \( u_{0} , \) that will define the Adomian polynomial, \( H_{0} \) using the first part of Eq. (A5). In the second part Eq. (A8), the Adomian polynomial \( H_{0} \) will enable us to evaluate \( {\mathcal{L}}\left\{ {u_{1} } \right\} \). Second, applying the inverse Laplace transform to \( {\mathcal{L}}\left\{ {u_{1} } \right\} \) gives the value of \( u_{1} , \) that will define the Adomian polynomial \( H_{1} \) using the second part of Eq. (A5) and so on. This in turn will lead to the complete evaluation of the components of \( u_{k} , k \ge 0 \) upon using different corresponding parts of Eqs. (A8) and (A5). Therefore, the series solution follows immediately after using the first part of Eq. (A4) with embedding parameter \( p = 1 \).

Appendix B: Fractional modified Burgers’ equation

Using the potential function, \( \Upsilon \left( {\xi ,\tau } \right) \), where the \( \varphi_{1} =\Upsilon _{\xi } \), gives the potential equation of the modified Burgers’ equation, Eq. (10), in the form:

$$ \Upsilon _{\xi \tau } + A\Upsilon _{\xi }\Upsilon _{\xi \xi } - B\varphi_{1\xi \xi } + \varphi_{1} /2\tau = 0, $$
(B1)

The functional of the Eq. (B1) can be represented [62, 63]:

$$ J\left(\Upsilon \right) = \int d\xi \int d\tau\Upsilon [a_{1}\Upsilon _{\xi \tau } + a_{2} A\Upsilon _{\xi }\Upsilon _{\xi \xi } - a_{3} B\varphi_{1\xi \xi } + a_{4} \varphi_{1} /2\tau ] $$
(B2)

Where \( a_{1} , a_{2} , a_{3} \) and \( a_{3} \) are unknown constants to be determined. Integrating this equation by parts where \( \left. {\Upsilon_{\tau } } \right|_{\text{R}} = \left. {\Upsilon_{\xi } } \right|_{\text{T}} = 0 \) gives:

$$ J\left( \Upsilon \right) = \int {d\xi \int {d\tau \left[ { - a_{1} \Upsilon_{\xi } \Upsilon_{\tau } - \frac{1}{2}a_{2} A\Upsilon_{\xi }^{3} - a_{3} B\Upsilon \varphi_{1\xi \xi } + a_{4} \Upsilon \varphi_{1} /2\tau } \right]} } $$
(B3)

Taking the first variations for this equation with respect to the dependent variable,\( \Upsilon \), and assuming that \( \varphi_{1} \) is a fixed function lead to,

$$ a_{1} = 1/2,\quad a_{2} = 1/3,\quad a_{3} = 1,\quad a_{4} = 1, $$
(B4)

So, according to the Eq. (B2), the Lagrangian of FMB equation, Eq. (B3), is given by

$$ F\left( {\Upsilon_{\tau } ,\Upsilon_{\xi } ,\Upsilon_{\xi \xi } } \right) = - \frac{1}{2}\Upsilon_{\xi } \Upsilon_{\tau } - \frac{1}{6}A\Upsilon_{\xi }^{3} - B\Upsilon \varphi_{1\xi \xi } + \Upsilon \varphi_{1} /2\tau , $$
(B5)

According to Eq. (B5), the Lagrangian of FSE can be written as:

$$ G\left( {{}_{0}^{{}} D_{\tau }^{\alpha } \Upsilon ,\Upsilon_{\xi } ,\Upsilon_{\xi \xi } } \right) = - \frac{1}{2}\left[ {{}_{0}^{{}} D_{\tau }^{\alpha } \Upsilon } \right]\Upsilon_{\xi } - \frac{1}{6}A\Upsilon_{\xi }^{3} - B\Upsilon \varphi_{1\xi \xi } + \Upsilon \varphi_{1} /2\tau ,\quad 0 < \alpha \le 1, $$
(B6)

where the left Riemann–Liouville fractional derivative \( {}_{0}^{{}} D_{\tau }^{\alpha } \) is reperesented by [36, 37]

$$ {}_{a}^{{}} D_{t}^{\alpha } f\left( t \right) = \frac{1}{{\Gamma \left( {k - \alpha } \right)}} \frac{{d^{k} }}{{dt^{k} }} \left[ {\mathop \int \limits_{a}^{t} d\tau \left( {t - \tau } \right)^{k - \alpha - 1} f\left( \tau \right)} \right]\quad k - 1 < \alpha \le k,\quad t\in\left[ {a,b} \right] $$
(B7)

The Laplace transform of the fractional derivative, \( {}_{a}^{{}} D_{t}^{\alpha } f\left( t \right) \), is given by:

$$ {\mathcal{L}}\left( {{}_{a}^{{}} D_{t}^{\alpha } f\left( t \right);s} \right) = s^{\alpha } {\mathcal{L}}\left( {f\left( t \right)} \right) - \mathop \sum \limits_{k = 0}^{n - 1} s^{k} \left[ {{}_{a}^{{}} D_{t}^{\alpha - k - 1} f\left( t \right)} \right]_{t = a} ,\quad k - 1 < \alpha \le k, $$
(B8)

The functional of the time fractional potential equation can be represented in the form,

$$ J\left( \Upsilon \right) = \mathop \int \limits_{R}^{{}} d\xi \mathop \int \limits_{T}^{{}} d\tau G\left( {{}_{0}^{{}} D_{\tau }^{\alpha } \Upsilon ,\Upsilon_{\xi } ,\Upsilon_{\xi \xi } } \right), $$
(B9)

where the time-fractional Lagrangian is defined by (B6).

Taking the first variations of Eq. (B9) with respect to the \( \Upsilon \) leads to:

$$ \delta J\left( \Upsilon \right) = \mathop \int \limits_{R}^{{}} d\xi \mathop \int \limits_{T}^{{}} d\tau \left[ {\left( {\frac{\partial G}{{\partial {}_{0}^{{}} D_{\tau }^{\alpha } \Upsilon }}} \right)\delta {}_{0}^{{}} D_{t}^{\alpha } \Upsilon + \left( {\frac{\partial G}{{\partial \Upsilon_{\xi } }}} \right)\delta \Upsilon_{\xi } + \left( {\frac{\partial G}{\partial \Upsilon }} \right)\delta \Upsilon } \right] $$
(B10)

Integrating by parts lead to:

$$ \delta J\left( \Upsilon \right) = \mathop \int \limits_{R}^{{}} d\xi \mathop \int \limits_{T}^{{}} d\tau \left[ {{}_{\tau }^{{}} D_{{T_{0} }}^{\alpha } \left( {\frac{\partial G}{{\partial {}_{0}^{{}} D_{\tau }^{\alpha } \Upsilon }}} \right) - \frac{\partial }{\partial \xi }\left( {\frac{\partial G}{{\partial \Upsilon_{\xi } }}} \right) + \left( {\frac{\partial G}{\partial \Upsilon }} \right)} \right]\delta \Upsilon , $$
(B11)

Here we assume that \( \updelta\Upsilon {\mid }_{\text{T}} =\updelta\Upsilon |_{\text{R}} =\updelta\Upsilon_{\upxi} {\mid }_{\text{R}} = 0. \)

Optimizing Eq. (B11), \( \updelta{\text{J}}\left( \Upsilon \right) = 0 \), gives the following Euler–Lagrange equation:

$$ {}_{\tau }^{{}} D_{{T_{0} }}^{\alpha } \left( {\frac{\partial G}{{\partial {}_{0}^{{}} D_{\tau }^{\alpha } \Upsilon }}} \right) - \frac{\partial }{\partial \xi }\left( {\frac{\partial G}{{\partial \Upsilon_{\xi } }}} \right) + \left( {\frac{\partial G}{\partial \Upsilon }} \right) = 0. $$
(B12)

Substituting from the Lagrangian equation, Eq. (B6), into Euler–Lagrange formula, Eq. (B12), and making use of Eq. (14) and \( \varphi_{1} = \Upsilon_{\xi } \) lead to the FMB equation, Eq. (13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari-Golshan, A. Investigation of cylindrical shock waves in dusty plasma. Indian J Phys 92, 1643–1650 (2018). https://doi.org/10.1007/s12648-018-1260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1260-y

Keywords

PACS Nos.

Navigation