Skip to main content
Log in

Innovative operational matrices based computational scheme for fractional diffusion problems with the Riesz derivative

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The computational methods based on operational matrices are promising tools to tackle the fractional order differential equations and they have gained increasing interest among the mathematical community. Herein, an efficient and precise computational algorithm based on a new kind of polynomials together with the collocation technique is presented for time-space fractional partial differential equations with the Riesz derivative. The method is proposed with the aid of a new operational matrix of the derivative using Chelyshkov polynomials (CPs) in the Caputo sense. The operational matrices of the derivative, exact and approximate, are derived via two different ways for integer and non-integer orders. The fractional problems under study have been converted into the corresponding nonlinear algebraic system of equations and solved by means of the collocation technique. The convergence and error bound are analyzed for the suggested computational method while a comparative study is included in our work to show the accuracy and efficiency of said method. The attained results confirm that the suggested technique is very accurate, efficient and reliable. As a suitable tool, it could be adopted to obtain the solutions for a class of the fractional order partial differential (linear and nonlinear) equations arising in engineering and applied sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & sons, USA, 1993)

  2. E.C. De Oliveira, J.A.T. Machado, Math. Prob. Eng. 2014, 238459 (2014)

    Article  Google Scholar 

  3. H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, Commun. Nonlinear Sci. Numer. Simul. 64, 213 (2018)

    Article  ADS  Google Scholar 

  4. C. Berg, H.L. Pedersen, J. Comput. Appl. Math. 133, 219 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. S.B. Yuste, L. Acedo, K. Lindenberg, Phys. Rev. E 69, 036126 (2004)

    Article  ADS  Google Scholar 

  6. M. Raberto, E. Scalas, F. Mainardi, Physica A 314, 749 (2002)

    Article  ADS  Google Scholar 

  7. D.A. Benson, S.W. Wheatcraft, M.M. Meerschaert, Water Resour. Res. 36, 1413 (2000)

    Article  ADS  Google Scholar 

  8. A. Dzielinski, D. Sierociuk, G. Sarwas, Bull. Polish Acad. Sci.: Techn. Sci. 58, 583 (2010)

    Google Scholar 

  9. D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Philos. Trans. R. Soc. A 371, 20120146 (2013)

    Article  ADS  Google Scholar 

  10. A. Atangana, A. Secer, Abstr. Appl. Anal. 2013, 279681 (2013)

    Google Scholar 

  11. A. Atangana, D. Baleanu, arXiv:1602.03408 (2016)

  12. A. Atangana, Appl. Math. Comput. 273, 948 (2016)

    MathSciNet  Google Scholar 

  13. S. Momani, Z. Odibat, Appl. Math. Comput. 177, 488 (2006)

    MathSciNet  Google Scholar 

  14. A. Atangana, J.F. Gomez-Aguilar, Numer. Methods Partial Differ. Equ. 34, 1502 (2018)

    Article  Google Scholar 

  15. M.A. Khan, A. Atangana, Entropy 21, 303 (2019)

    Article  ADS  Google Scholar 

  16. K.M. Owolabi, A. Atangana, Chaos 29, 023111 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. El-Ajou, O. Abu Arqub, S. Momani, D. Baleanu, A. Alsaedi, Appl. Math. Comput. 257, 119 (2015)

    MathSciNet  Google Scholar 

  18. S. Arshad, J. Huang, A.Q.M. Khaliq, Y. Tang, J. Comput. Phys. 350, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Hamid, M. Usman, T. Zubair, S.T. Mohyud-Din, Ain Shams Eng. J. 9, 2323 (2018)

    Article  Google Scholar 

  20. U. Saeed, M.U. Rehman, Q. Din, Eng. Comput. 35, 2349 (2018)

    Article  Google Scholar 

  21. M. Usman, M. Hamid, R.U. Haq, W. Wang, Eur. Phys. J. Plus 133, 327 (2018)

    Article  Google Scholar 

  22. M. Hamid, M. Usman, T. Zubair, R.U. Haq, A. Shafee, Physica A 11, 121320 (2019)

    Article  Google Scholar 

  23. C. Cattani, T.A. Sulaiman, H.M. Baskonus, H. Bulut, Eur. Phys. J. Plus 133, 228 (2018)

    Article  Google Scholar 

  24. M. Hamid, M. Usman, T. Zubair, Z.H. Khan, W. Wang, J. Comput. Design Eng. (2019) https://doi.org/10.1016/j.jcde.2019.03.004

    Article  Google Scholar 

  25. A. Allwright, A. Atangana Discr. Contin. Dyn. Syst. S (2019) https://doi.org/10.3934/dcdss.2020025

    Article  Google Scholar 

  26. K.M. Owolabi, A. Atangana, Discr. Contin. Dyn. Syst. S 12, 567 (2019)

    Google Scholar 

  27. U. Saeed, Int. J. Wavelets, Multi-Resolution Inf. Process. 15, 1750043 (2017)

    Article  MathSciNet  Google Scholar 

  28. M.H. Heydari, M.R. Hooshmandasl, C. Cattani, Proc. Math. Sci. 128, 26 (2018)

    Article  Google Scholar 

  29. M. Usman, M. Hamid, T. Zubair, R.U. Haq, W. Wang, Eur. Phys. J. Plus 134, 279 (2019)

    Article  Google Scholar 

  30. M. Hamid, M. Usman, R.U. Haq, Z.H. Khan, W. Wang, Appl. Math. Mech. 40, 1211 (2019)

    Article  Google Scholar 

  31. M. Hamid, M. Usman, R.U. Haq, Phys. Scr. 94, 115219 (2019)

    Article  ADS  Google Scholar 

  32. F.D. Cunden, F. Mezzadri, N. O’Connell, N. Simm, Commun. Math. Phys. 369, 1091 (2019)

    Article  Google Scholar 

  33. V.S. Chelyshkov, Electron. Trans. Numer. Anal. 25, 17 (2006)

    MathSciNet  Google Scholar 

  34. E. Gokmen, G. Yuksel, M. Sezer, J. Comput. Appl. Math. 311, 354 (2017)

    Article  MathSciNet  Google Scholar 

  35. F. Mohammadi, Comput. Appl. Math. 37, 4122 (2018)

    Article  MathSciNet  Google Scholar 

  36. F. Mohammadi, L. Moradi, D. Baleanu, A. Jajarmi, J. Vibr. Control 24, 5030 (2018)

    Google Scholar 

  37. E. Kreyszig, Introductory Functional Analysis with Applications (Wiley, New York, 1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Hamid or M. Usman.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, M., Usman, M., Zubair, T. et al. Innovative operational matrices based computational scheme for fractional diffusion problems with the Riesz derivative. Eur. Phys. J. Plus 134, 484 (2019). https://doi.org/10.1140/epjp/i2019-12871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12871-y

Navigation