Skip to main content
Log in

Wavelet analysis of stagnation point flow of non-Newtonian nanofluid

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The wavelet approach is introduced to study the influence of the natural convection stagnation point flow of the Williamson fluid in the presence of thermophysical and Brownian motion effects. The thermal radiation effects are considered along a permeable stretching surface. The nonlinear problem is simulated numerically by using a novel algorithm based upon the Chebyshev wavelets. It is noticed that the velocity of the Williamson fluid increases for assisting flow cases while decreases for opposing flow cases when the unsteadiness and suction parameters increase, and the magnetic effect on the velocity increases for opposing flow cases while decreases for assisting flow cases. When the thermal radiation parameter, the Dufour number, and Williamson’s fluid parameter increase, the temperature increases for both assisting and opposing flow cases. Meanwhile, the temperature decreases when the Prandtl number increases. The concentration decreases when the Soret parameter increases, while increases when the Schmidt number increases. It is perceived that the assisting force decreases more than the opposing force. The findings endorse the credibility of the proposed algorithm, and could be extended to other nonlinear problems with complex nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

λ:

Buoyancy effect due to the temperature difference

λ*:

Buoyancy effect due to the concentration difference

k*:

coefficient of the mean absorption

β C :

coefficient of the concentration expansion

ρ :

density of the fluid

σ :

electrical conductivity

M :

Hartmann number

B :

magnetic field strength

T m :

mean fluid temperature

c s :

ratio of the thermal diffusion

Re :

Reynolds number

r :

stagnation point parameter

Sr :

Soret number

k :

thermal conductivity

A :

unsteadiness parameter

σ*:

Boltzmann constant

k T :

concentration susceptibility

Γ:

coefficient of the Williamson fluid

β T :

coefficient of thermal expansion

Du :

Dufour number

g :

gravitational acceleration

ν :

kinematic viscosity

D B :

mass diffusivity coefficient

Pr :

Prandtl number

R :

ratio of λ* to λ

c p :

specific heat

S :

suction parameter

Sc :

Schmidt number

Rd :

thermal radiation

Λ:

Williamson fluid parameter

References

  1. HIEMENZ, K. Die grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dingler’s Polytechnic Journal, 326, 321–324 (1911)

    Google Scholar 

  2. HOMANN, F. and ANGEW, Z. Der einfluss grosser Zähigkeit bei der Strömung um den zylinder und um die Kugel. Journal of Applied Mathematics and Mechanics, 16, 153–164 (1936)

    MATH  Google Scholar 

  3. MAKINDE, O. D., KHAN, W. A., and KHAN, Z. H. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. International Journal of Heat and Mass Transfer, 62, 526–533 (2013)

    Article  Google Scholar 

  4. HAQ, R. U., NADEEM, S., KHAN, Z. H., and AKBAR, N. S. Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E: Low-Dimensional Systems and Nanostructures, 65, 17–23 (2015)

    Article  Google Scholar 

  5. HAYAT, T., KHAN, M. I., WAQAS, M., ALSAEDI, A., and FAROOQ, M. Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon-water nanofluid. Computer Methods in Applied Mechanics and Engineering, 315, 1011–1024 (2017)

    Article  MathSciNet  Google Scholar 

  6. TARAKARAMU, N. and NARAYANA, P. V. Nonlinear thermal radiation and Joule heating effects on MHD stagnation point flow of a nanofluid over a convectively heated stretching surface. Journal of Nanofluids, 8, 1066–1075 (2019)

    Article  Google Scholar 

  7. PAL, D. Heat and mass transfer in stagnation-point flow towards a stretching surface in the presence of buoyancy force and thermal radiation. Meccanica, 44, 145–158 (2009)

    Article  MATH  Google Scholar 

  8. USMAN, M., ZUBAIR, T., HAMID, M., HAQ, R. U., and WANG, W. Wavelets solution of MHD 3-D fluid flow in the presence of slip and thermal radiation effects. Physics of Fluids, 30, 023104 (2018)

    Article  Google Scholar 

  9. MOHYUD-DIN, S. T., USMAN, M., AFAQ, K., HAMID, M., and WANG, W. Examination of carbon-water nanofluid flow with thermal radiation under the effect of Marangoni convection. Engineering Computations, 34, 2330–2343 (2017)

    Article  Google Scholar 

  10. HAYAT, T., QASIM, M., SHEHZAD, S. A., and ALSAEDI, A. Unsteady stagnation point flow of second grade fluid with variable free stream. Alexandria Engineering Journal, 53, 455–461 (2014)

    Article  Google Scholar 

  11. BOULAHIA, Z., WAKIF, A., and SEHAQUI, R. Heat transfer and cu-water nanofluid flow in a ventilated cavity having central cooling cylinder and heated from the below considering three different outlet port locations. Frontiers in Heat and Mass Transfer, 11, 11 (2018)

    Article  Google Scholar 

  12. SAIDUR, R., LEONG, K. Y., and MOHAMMAD, H. A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 15, 1646–1668 (2011)

    Article  Google Scholar 

  13. CHOI, S. U. S. Enhancing thermal conductivity of fluids with nanoparticle. Developments and Applications of Non-Newtonian Flows, Springer, New York (1995)

    Google Scholar 

  14. BUONGIORNO, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  15. TIWARI, R. K. and DAS, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  16. HAYAT, T., ABBASI, F. M., AL-YAMI, M., and MONAQUEL, S. Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects. Journal of Molecular Liquids, 194, 93–99 (2014)

    Article  Google Scholar 

  17. REDDY, P. S. and CHAMKHA, A. J. Soret and Dufour effects on MHD convective flow of Al2O3-water and TiO2-water nanofluids past a stretching sheet in porous media with heat generation/absorption. Advanced Powder Technology, 27, 1207–1218 (2016)

    Article  Google Scholar 

  18. HAYAT, T., FAROOQ, S., ALSAEDI, A., and AHMAD, B. Numerical study for Soret and Dufour effects on mixed convective peristalsis of Oldroyd 8-constants fluid. International Journal of Thermal Sciences, 112, 68–81 (2017)

    Article  Google Scholar 

  19. HAMID, M., USMAN, M., ZUBAIR, T., HAQ, R. U., and WANG, W. Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: a Galerkin approach. International Journal of Heat and Mass Transfer, 124, 706–714 (2018)

    Article  Google Scholar 

  20. USMAN, M., HAMID, M., MOHYUD-DIN, S. T., WAHEED, A., and WANG, W. Exploration of uniform heat flux on the flow and heat transportation of ferrofluids along a smooth plate: comparative investigation. International Journal of Biomathematics, 11, 1850048 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. SHEIKHOLESLAMI, M. and ROKNI, H. B. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. International Journal of Heat and Mass Transfer, 118, 823–831 (2018)

    Article  Google Scholar 

  22. WILLIAMSON, R. V. The flow of pseudoplastic materials. Industrial and Engineering Chemistry, 21, 1108–1111 (1929)

    Article  Google Scholar 

  23. AMANULLA, C. H., NAGENDRA, N., RAO, A. S., BEG, O. A., and KADIR, A. Numerical exploration of thermal radiation and Biot number effects on the flow of a non-Newtonian MHD Williamson fluid over a vertical convective surface. Heat Transfer-Asian Research, 47, 286–304 (2018)

    Article  Google Scholar 

  24. JAIN, S. and PARMAR, A. Radiation effect on MHD Williamson fluid flow over stretching cylinder through porous medium with heat source. Applications of Fluid Dynamics, Springer, Singapore (2018)

    Google Scholar 

  25. HAMID, M., USMAN, M., KHAN, Z. H., HAQ, R. U., and WANG, W. Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation. The European Physical Journal Plus, 133, 527 (2018)

    Article  Google Scholar 

  26. MUSTAFA, M., KHAN, J. A., HAYAT, T., and ALSAEDI, A. Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. International Journal of Heat and Mass Transfer, 108, 1340–1346 (2017)

    Article  Google Scholar 

  27. NOOR, N. F., HAQ, R. U., NADEEM, S., and HASHIM, I. Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica, 50, 2007–2022 (2015)

    Article  MathSciNet  Google Scholar 

  28. HAQ, R. U., NADEEM, S., AKBAR, N. S., and KHAN, Z. H. Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Transactions on Nanotechnology, 14, 42–50 (2015)

    Article  Google Scholar 

  29. AKBAR, N. S., TRIPATHI, D., KHAN, Z. H., and BEG, O. A. A numerical study of magnetohydrodynamic transport of nanofluids over a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects. Chemical Physics Letters, 661, 20–30 (2016)

    Article  Google Scholar 

  30. DOHA, E. H., ABD-ELHAMEED, W. M., and ALSUYUTI, M. M. On using third and fourth kinds Chebyshev polynomials for solving the integrated forms of high odd-order linear boundary value problems. Journal of the Egyptian Mathematical Society, 23, 397–405 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. ZHOU, F. and XU, X. The third kind Chebyshev wavelets collocation method for solving the time-fractional convection diffusion equations with variable coefficients. Applied Mathematics and Computation, 280, 11–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. ABD-ELHAMEED, W. M., DOHA, E. H., and YOUSSRI, Y. H. New wavelets collocation method for solving second-order multipoint boundary value problems using Chebyshev polynomials of third and fourth kinds. Abstract and Applied Analysis, 2013, 542839 (2013)

    MathSciNet  MATH  Google Scholar 

  33. MUKHOPADHYAY, S. Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in a porous medium. International Journal of Heat and Mass Transfer, 52, 3261–3265 (2009)

    Article  MATH  Google Scholar 

  34. GRUBKA, L. J. and BOBBA, K. M. Heat transfer characteristics of a continuous stretching surface with variable temperature. Journal of Heat Transfer, 107, 248–250 (1985)

    Article  Google Scholar 

  35. CHEN, C. H. Laminar mixed convection adjacent to vertical, continuously stretching sheets. Heat and Mass Transfer, 33, 471–476 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers and editor for suggesting suitable changes in the original manuscript. The first author is also grateful to the China Scholarship Council (CSC) for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Khan.

Additional information

Citation: HAMID, M., USMAN, M., HAQ, R. U., KHAN, Z. H., and WANG, W. Wavelet analysis of stagnation point flow of non-Newtonian nanofluid. Applied Mathematics and Mechanics (English Edition) 40(8), 1211–1226 (2019) https://doi.org/10.1007/s10483-019-2508-6

Project supported by the National Natural Science Foundation of China (Nos. 51709191, 51706149, and 51606130), the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education of China (No.ARES-2018-10), and the State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University of China (No. Skhl1803)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, M., Usman, M., Haq, R.U. et al. Wavelet analysis of stagnation point flow of non-Newtonian nanofluid. Appl. Math. Mech.-Engl. Ed. 40, 1211–1226 (2019). https://doi.org/10.1007/s10483-019-2508-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2508-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation