Skip to main content

Advertisement

Log in

Carbon nanoparticles assisted energy transport mechanism in leaves: A thermal lens study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the world of increasing population and pollution due to carbon emissions, the research for effective utilization of futile diesel soot for fruitful applications has become a necessity for a sustainable development. The contribution to pollution from vehicles and industries due to the aging of engines has caused a crisis. Carbon nanoparticles (CNPs) have been the subject of interest because of their good physical, chemical, and biological properties. The present work investigates the role of CNPs produced by internal combustion engines on the energy transport mechanism among leaf pigments using the sensitive and nondestructive single beam thermal lens technique. The studies reveal the absorption changes by various chlorophyll pigments with the concentration of CNPs sprayed on the leaves. Though for low concentrations CNPs lower the photon absorbance by chlorophyll pigments, the effect gets reversed at higher concentrations. The variation of thermal diffusivity with CNP concentration and its role in the energy transport mechanism among chlorophyll pigments are also studied. It is found that CNP concentrations of 625-2500mg/l are good for better intra-pigment energy transport leading to increased rate of photosynthesis and plant yield and thereby helping in attaining food security. The variation of CNP assisted energy transport among leaf pigments on the production of nicotinamide adenine dinucleotide phosphate (NADPH) and carbohydrates is also studied with ultraviolet (UV) and near-infrared (NIR) spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sheykhbaglou, M. Sedghi, M. Tajbakhsh Shishvan, R. SeyedSharifi, Not. Sci. Biol. 2, 112 (2010)

    Article  Google Scholar 

  2. Y. Wang, C.A. Mirkin, S.J. Park, ACS Nano 26, 1049 (2009)

    Article  Google Scholar 

  3. S. Singh, J. Nanosci. Nanotechnol. 10, 7906 (2010)

    Article  Google Scholar 

  4. T. Adhikari, S. Kundu, A.K. Biswas, J.C. Tarafdar, A.S. Rao, J. Agric. Sci. Technol. A 2, 815 (2012)

    Google Scholar 

  5. O. Zaytseva, G. Neumann, Chem. Biol. Technol. Agric. 3, 17 (2016)

    Article  Google Scholar 

  6. P. Biswas, C.Y. Wu, J. Air Waste Manag. Assoc. 55, 708 (2005)

    Article  Google Scholar 

  7. S. Zhu, E. Oberdoster, M.L. Haasch, Mar. Environ. Res. 62, S5 (2006)

    Article  Google Scholar 

  8. H. Zhu, J.Q. Han, Y. Jin, J. Environ. Monit. 10, 713 (2008)

    Article  Google Scholar 

  9. S.H. Ko, C.P. Grigoropoulos (Editors), Nanotechnology’s wonder material: synthesis of carbon nanotubes, in Hierarchical Nanostructures for Energy Devices (Royal Society of Chemistry, Cambridge, 2014) pp. 26--58

  10. K. Novoselov, Phys. World 22, 27 (2009)

    Article  Google Scholar 

  11. M.S. Swapna, S. Sankararaman, J. Mater. Sci. Nanotechnol. 5, 104 (2017)

    Google Scholar 

  12. M.S. Swapna, V.M. Pooja, S.A. Anamika, S. Soumya, S. Sankararaman, JOJ Mater. Sci. 1, 555566 (2017)

    Google Scholar 

  13. G. Hoch, B. Kok, Annu. Rev. Plant Physiol. 12, 155 (1961)

    Article  Google Scholar 

  14. X.J. Wang, L.P. Wang, O.S. Adewuyi, B.A. Cola, Z.M. Zhang, Appl. Phys. Lett. 97, 163116 (2010)

    Article  ADS  Google Scholar 

  15. S. Riya, M.S. Swapna, R. Vimal, H. Misha, S. Sankararaman, Mater. Res. Express 5, 075001 (2018)

    Article  ADS  Google Scholar 

  16. M.S. Swapna, S. Manjusha, R. Vimal, H. Misha, S. Sankararaman, J. Opt. Soc. Am. B 35, 1662 (2018)

    Article  ADS  Google Scholar 

  17. R. Zamiri, B.Z. Azmi, E. Shahriari, K. Naghavi, E. Saion, Z. Rizwan, M.S. Husin, J. Laser Appl. 23, 042002 (2011)

    Article  ADS  Google Scholar 

  18. C.V. Bindhu, S.S. Harilal, V.P.N. Nampoori, C.P.G. Vallabhan, Soc. Photo-Opt. Instrum. Eng. 37, 2791 (1998)

    Google Scholar 

  19. V. Raj, S. Soumya, M.S. Swapna, S. Sankararaman, Mater. Res. Express 5, 115504 (2018)

    Article  ADS  Google Scholar 

  20. S. Hussain, P. Jha, A. Chouksey, R. Raman, S.S. Islam, T. Islam, P.K. Choudary, Harsh, J. Mod. Phys. 2, 538 (2011)

    Article  Google Scholar 

  21. P. Mahalingam, B. Parasuram, T. Maiyalagan, S. Sundaram, J. Environ. Nanotechnol. 1, 53 (2012)

    Google Scholar 

  22. M.S. Swapna, C. Beryl, S.S. Reshma, Veena Chandran, V.S. Vishnu, P.M. Radhamany, S. Sankararaman, BioNanoSci. 7, 583 (2017)

    Article  Google Scholar 

  23. B.N. Sahoo, B. Kandasubramanian, RSC Adv. 4, 11331 (2014)

    Article  Google Scholar 

  24. Govindjee, B.Z. Braun, Algal Physiology and Biochemistry, edited by W.D.P. Stewart (Blackwell Scientific Publication Ltd., Oxford, 1974) pp. 346--390

  25. H.K. Lichtenthaler, Chlorophylls and Carotenoid: Pigments of Photosynthetic Biomembranes. Methods in Enzymology (Acadamic Press, San Diego, New York, 1987) pp. 350--382

  26. S.W. Wright, S.W. Jeffrey, R.F.C. Mantoura, C.A. Llewellyn, T. Bjornlans, D. Repera, Welschmeyer, Mar Ecol. Prog. Ser. 77, 183 (1997)

    Article  ADS  Google Scholar 

  27. S. Yoshida, D.A. Forno, J.H. Cock, K.A. Geomez, in Laboratory Manual for Physiological Studies of Rice, 3rd ed. (IRRI, Manila, 1976)

  28. S.A. Joseph, M. Hari, S. Mathew, G. Sharma, V.M. Hadiya, P. Radhakrishnan, V.P.N. Nampoori, Opt. Commun. 283, 313 (2010)

    Article  ADS  Google Scholar 

  29. R.C.C. Liete, R.S. Moore, J.R. Whinnery, Appl. Phys. Lett. 5, 141 (1964)

    Article  ADS  Google Scholar 

  30. M.S. Swapna, H.V. Saritha Devi, Vimal Raj, S. Sankararaman, Eur. Phys. J. Plus 133, 106 (2018)

    Article  Google Scholar 

  31. M.S. Swapna, S. Sankararaman, Mater. Res. Express 5, 016203 (2018)

    Article  ADS  Google Scholar 

  32. J.P. Giraldo, M.P. Landry, S.M. Faltermeier, T.P. McNicholas, N.M. Iverson, A.A. Boghossian, N.F. Reuel, A.J. Hilmer, F. Sen, J.A. Brew, M.S. Strano, Nat. Mater. 13, 400 (2014)

    Article  ADS  Google Scholar 

  33. M.V. Khodakovskaya, K. de Silva, A.S. Biris, E. Dervishi, H. Villagarcia, ACS Nano 6, 2128 (2012)

    Article  Google Scholar 

  34. J.E. Canas, M. Long, S. Nations, R. Vadan, L. Dai, M. Luo, R. Ambikapathi, E.H. Lee, D. Olszyk, Environ. Toxicol. Chem. 27, 1922 (2008)

    Article  Google Scholar 

  35. M.V. Khodakovskaya, B.S. Kim, J.N. Kim, M. Alimohammadi, E. Dervishi, T. Mustafa, C.E. Cernigala, Small 9, 115 (2013)

    Article  Google Scholar 

  36. Mondal, R. Basu, S. Das, P. Nandy, J. Nanoparticle Res. 13, 4519 (2011)

    Article  ADS  Google Scholar 

  37. A. Boghossian, M.-H. Ham, J.H., Choi, M.S. Strano, Energy Environ. Sci. 4, 3834 (2011)

    Article  Google Scholar 

  38. J.O. Calkins, Y. Umasankar, H. O’Neill, R.P. Ramasamy, Energy Environ. Sci. 6, 1891 (2013)

    Article  Google Scholar 

  39. M. Vithange, M. Seneviratne, M. Ahmad, B. Sarkar, S.O. Yong, Environ. Geochem. Health 39, 1421 (2017)

    Article  Google Scholar 

  40. A. Boghossian, M.-H. Ham, J.H. Choi, M.S. Strano, Energy Environ. Sci. 4, 3834 (2011)

    Article  Google Scholar 

  41. J. De Ruyck, M. Fameree, J. Wouters, E.A. Perpete, J. Preat, D. Jacquemin, Chem. Phys. Lett. 450, 119 (2007)

    Article  ADS  Google Scholar 

  42. E.J. Dell, F. Ganske, Detections of NADH and NADPH with the Omega’s High Speed, Full UV/Vis Absorbance Spectrometer (BMG LABTECH, GmbH, Offenburg, 2008)

  43. S. Steigenberger, F. Terjung, H.-P. Grossart, R. Reuter, EARSeL eProc. 3, 18 (2004)

    Google Scholar 

  44. L. Kaijanen, M. Paakkunainen, S. Pietarinen, E. Jernström, S.-P. Reinikainen, Int. J. Electrochem. Sci. 10, 2950 (2015)

    Google Scholar 

  45. S. Gunasekaran, M.K. Devi, Asian J. Chem. 19, 3363 (2007)

    Google Scholar 

  46. C. Sarazin, N. Delaunay, C. Costanza, V. Eudes, J.-M. Mallet, P. Gareil, Anal. Chem. 83, 7381 (2011)

    Article  Google Scholar 

  47. I. Beckers, http://www.andor.com/Learning-Academy/Spec-Tralresponse-of-Glucose-Spectral-Response-within-Optical-Window-of-Tissue (ANDOR Technol. Plc, Belfast)

  48. M.G. López, A.S. García-González, E. Franco-Robles, in Developments in Near-Infrared Spectroscopy (InTech, 2017)

  49. M. Vithange, M. Seneviratne, M. Ahmad, B.Sarkar, S.O. Yong, Environ. Geochem. Health 39, 1421 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swapna, M.S., Raj, V., Saritha Devi, H.V. et al. Carbon nanoparticles assisted energy transport mechanism in leaves: A thermal lens study. Eur. Phys. J. Plus 134, 416 (2019). https://doi.org/10.1140/epjp/i2019-12780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12780-1

Navigation