Skip to main content

Advertisement

Log in

Aharonov-Bohm effect in pseudo-elliptic quantum rings: influence of geometry, eccentricity and electric field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We theoretically investigated the influence of shape, structural distortion and electric field on the Aharonov-Bohm (AB) oscillations observed in the energy and in the nonlinear absorption spectra of a pseudo-elliptic quantum ring (PEQR). The potential that describes the PEQR is a combination of parabolic and inverse square potentials, that allows a detailed phenomenological analysis of the variation of AB oscillations period with the magnetic field. For a moderate outer ellipse eccentricity, the decrement of ring width, the small displacement of the inner circle of the ring along the x(y) -axis or an in-plane electric field directed along the x(y) -axis lead to the suppression of the AB oscillations for the lower energy levels and to the decrement of their period and amplitude for the higher levels. The electric field has a similar effect on the energy spectrum as the inner circle displacement along the same direction. All absorption spectra display the influence of AB oscillations in the energy and in the amplitude of some peaks. The spectra have particular features depending on the applied fields and can be potentially used as sensitive tools for deciphering the presence and direction of an electric field or of eccentricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, H. Yamada, Phys. Rev. Lett. 56, 792 (1986)

    Article  ADS  Google Scholar 

  3. N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano, H. Yamada, Phys. Rev. A 34, 815 (1986)

    Article  ADS  Google Scholar 

  4. S. Pedersen A.E. Hansen, A. Kristensen, C.B. Sørensen, P.E. Lindelof, Phys. Rev. B 61, 5457 (2000)

    Article  ADS  Google Scholar 

  5. G. Timp, P.M. Mankiewich, P. deVegvar, R. Behringer, J.E. Cunningham, R.E. Howard, H.U. Baranger, J.K. Jain, Phys. Rev. B 39, 6226 (1989)

    Article  ADS  Google Scholar 

  6. G. Timp, A.M. Chang, J.E. Cunningham, T.Y. Chang, P. Mankiewich, R. Behringer, R.E. Howard, Phys. Rev. Lett. 58, 2814 (1987)

    Article  ADS  Google Scholar 

  7. T. Heinzel, R. Held, S. Lüscher, K. Ensslin, W. Wegscheider, M. Bichler, Physica E 9, 84 (2001)

    Article  ADS  Google Scholar 

  8. J.A. Lorke, R.J. Luyken, A.O. Govorov, J.P. Kotthaus, J.M. Garcia, P.M. Petroff, Phys. Rev. Lett. 84, 2223 (2000)

    Article  ADS  Google Scholar 

  9. F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F.M. Peeters, C.C. BofBufon, C. Deneke, Y.H. Chen, A. Rastelli, O.G. Schmidt, V. Zwiller, Phys. Rev. B 82, 075309 (2010)

    Article  ADS  Google Scholar 

  10. M.D. Teodoro, V.L. Campo, V. Lopez-Richard, E. Marega, G.E. Marques, Y. GalvãoGobato, F. Iikawa, M.J.S.P. Brasil, Z.Y. AbuWaar, V.G. Dorogan, Yu.I. Mazur, M. Benamara, G.J. Salamo, Phys. Rev. Lett. 104, 086401 (2010)

    Article  ADS  Google Scholar 

  11. A. Kristensen, P.E. Lindelof, J. Bo Jensen, M. Zaffalon, J. Hollingbery, S.W. Pedersen, J. Nygård, H. Bruus, S.M. Reimann, C.B. Sørensen, M. Michel, A. Forchel, Physica B 249-251, 180 (1998)

    Article  ADS  Google Scholar 

  12. A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Nature 413, 822 (2001)

    Article  ADS  Google Scholar 

  13. T. Raz, D. Ritter, G. Bahir, Appl. Phys. Lett. 82, 1706 (2003)

    Article  ADS  Google Scholar 

  14. J.M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J.L. Feng, A. Lorke, J. Kotthaus, P.M. Petroff, Appl. Phys. Lett. 71, 2014 (1997)

    Article  ADS  Google Scholar 

  15. M. Hanke, Yu.I. Mazur, E. Marega jr., Z.Y. AbuWaar, G.J. Salamo, P. Schäfer, M. Schmidbauer, Appl. Phys. Lett. 91, 043103 (2007)

    Article  ADS  Google Scholar 

  16. Y.D. Sibirmovskii, I.S. Vasil'evskii, A.N. Vinichenko, I.S. Eremin, D.M. Zhigunov, N.I. Kargin, O.S. Kolentsova, P.A. Martyuk, M.N. Strikhanov, Semiconductors 49, 638 (2015)

    Article  ADS  Google Scholar 

  17. V. Kotimäki, E. Räsänen, Phys. Rev. B 81, 245316 (2010)

    Article  ADS  Google Scholar 

  18. A. Bruno-Alfonso, A. Latgè, Phys. Rev. B 77, 205303 (2008)

    Article  ADS  Google Scholar 

  19. J.A. Vinasco, A. Radu, E. Kasapoglu, R.L. Restrepo, A.L. Morales, E. Feddi, M.E. Mora-Ramos, C.A. Duque, Sci. Rep. 8, 13299 (2018)

    Article  ADS  Google Scholar 

  20. L.I. Magarill, D.A. Romanov, A.V. Chaplik, JETP 83, 361 (1996)

    ADS  Google Scholar 

  21. J. Planelles, F. Rajadell, J.I. Climente, Nanotechnology 18, 375402 (2007)

    Article  Google Scholar 

  22. G.A. Farias, M.H. Degani, J.A.K. Freire, J. Costa e Silva, R. Ferreira, Phys. Rev. B 77, 085316 (2008)

    Article  ADS  Google Scholar 

  23. Li Hai-Tao, Liu Li-Zhe, Liu Jian-Jun, Chi. Phys. Lett. 25, 4101 (2008)

    Article  ADS  Google Scholar 

  24. Bing Li, Yong-Hui Liu, Jian-Jun Liu, Phys. Lett. A 375, 1205 (2011)

    Article  ADS  Google Scholar 

  25. S. Ghajarpour-Nobandegani, M.J. Karimi, Opt. Mater. 82, 75 (2018)

    Article  ADS  Google Scholar 

  26. A. Bruno-Alfonso, A. Latgè, Phys. Rev. B 71, 125312 (2005)

    Article  ADS  Google Scholar 

  27. M.M. Milošević, M. Tadić, F.M. Peeters, Nanotechnology 19, 455401 (2008)

    Article  Google Scholar 

  28. T. Chakraborty, A. Manaselyan, M. Barseghyan, D. Laroze, Phys. Rev. B 97, 041304(R) (2018)

    Article  ADS  Google Scholar 

  29. H.M. Baghramyan, M.G. Barseghyan, D. Laroze, Sci. Rep. 7, 13299 (2017)

    Article  Google Scholar 

  30. H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan, J.H. Ojeda, J. Bragard, D. Laroze, Sci. Rep. 8, 6145 (2018)

    Article  ADS  Google Scholar 

  31. D. Bejan, C. Stan, Philos. Mag. 99, 492 (2019) and references therein

    Article  ADS  Google Scholar 

  32. E.C. Niculescu, D. Bejan, Philos. Mag. 97, 2089 (2017)

    Article  ADS  Google Scholar 

  33. D. Bejan, Phys. Lett. A 381, 3307 (2017)

    Article  ADS  Google Scholar 

  34. E.C. Niculescu, C. Stan, D. Bejan, C. Cartoaje, J. Appl. Phys. 122, 144301 (2017)

    Article  ADS  Google Scholar 

  35. D. Bejan, C. Stan, E.C. Niculescu, Opt. Mater. 78, 207 (2018)

    Article  ADS  Google Scholar 

  36. C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Ann. Phys. 524, 327 (2012)

    Article  Google Scholar 

  37. G. Liu, K. Guo, C. Wang, Physica B 407, 2334 (2012)

    Article  ADS  Google Scholar 

  38. W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)

    Article  ADS  Google Scholar 

  39. W.-C. Tan, J.C. Inkson, Phys. Rev. B 53, 6947 (1996)

    Article  ADS  Google Scholar 

  40. W.-C. Tan, J.C. Inkson, Phys. Rev. B 60, 5626 (1999)

    Article  ADS  Google Scholar 

  41. D. Bejan, G. Raseev, Surf. Sci. 528, 163 (2003)

    Article  ADS  Google Scholar 

  42. R.E. Acosta, A.L. Morales, C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Phys. Status Solidi B 253, 744 (2016)

    Article  ADS  Google Scholar 

  43. R.D. Cook, D.S. Malkus, M.E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd edition (John Wiley & Sons, New York, 1989)

  44. E. Paspalakis, J. Boviatsis, S. Baskoutas, J. Appl. Phys. 114, 153107 (2013)

    Article  ADS  Google Scholar 

  45. T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford University Press, New York, 2010)

  46. D. Bejan, E.C. Niculescu, Physica E 75, 149 (2016)

    Article  ADS  Google Scholar 

  47. G.O. de Sousa, D.R. da Costa, A. Chaves, G.A. Farias, F.M. Peeters, Phys. Rev. B 95, 205414 (2017)

    Article  ADS  Google Scholar 

  48. D. Mailly, C. Chapelier, A. Benoit, Phys. Rev. Lett. 70, 2020 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Stan.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejan, D., Stan, C. Aharonov-Bohm effect in pseudo-elliptic quantum rings: influence of geometry, eccentricity and electric field. Eur. Phys. J. Plus 134, 127 (2019). https://doi.org/10.1140/epjp/i2019-12557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12557-6

Navigation