Skip to main content

Crossing Points in Spectra and Light Absorption in Spheroidal and Cone-Shaped Quantum Dots

  • Conference paper
  • First Online:
Optics and Its Applications

Abstract

We briefly review the analysis of the energy spectrum, the envelope eigenfunctions of electron, hole and exciton states, and the direct interband light absorption in cone-shaped and spheroidal impenetrable quantum dots. We apply high-order finite element method and calculation schemes of Kantorovich method in comparison with the adiabatic approximation (in the strong size quantization limit) for solving boundary-value problems that describe axially symmetric quantum dots. We demonstrate the efficiency of the algorithms and software by benchmark calculations of spectral and optical characteristics of the cone-shaped and spheroidal quantum dots and crossing points in their spectra.

Partially supported by the RFBR (grant No. 17-51-44003 Mong_a) and the RUDN University Strategic Academic Leadership Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For electron(e) and hole(h) states \(2 V_C(\rho ,z)=0\), and for exciton states \(2V_C(\rho ,z)=-2/\sqrt{\rho ^2+z^2}\), \(2V_C(\rho ,z)= \tilde{V}_C(\tilde{\rho },\tilde{z})/E_{R}\), \(\tilde{V}_C(\tilde{\rho },\tilde{z})= -2e/(\kappa \sqrt{\tilde{\rho }^2+\tilde{z}^2})\), where e and \(m_e\) are the electron charge and mass, \(\kappa \) is the static permittivity. For GaAs model we use the reduced atomic units, \(m_e^*=0.067 m_e\), \(m_h^*=m_e^*/0.12\), \(\kappa =13.18\), \(a_B=104\)Å, \(E_R=5.275\) meV, i.e., \(\mathcal{E}=2E=\tilde{E}/E_{R}\), \(\Psi (\rho ,z)=a_{B}^{3/2}\tilde{\Psi }^{e}(\tilde{\rho },\tilde{z})\), \(\rho =\tilde{\rho }/a_B\), \(z=\tilde{z}/a_B\), where \(\tilde{E}\), \(\tilde{V}_C(\tilde{\rho },\tilde{z})\), \(\tilde{\rho }\) and \(\tilde{z}\) are dimensioned quantities.

References

  1. Harrison, P.: Quantum Wells. Wires and Dots. Theoretical and Computational Physics of Semiconductor Nanostructures. Wiley, New York (2005)

    Book  Google Scholar 

  2. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland Publ. Comp, Amsterdam (1978)

    MATH  Google Scholar 

  3. Ramdas Ram-Mohan, L.: Finite Element and Boundary Element Applications in Quantum Mechanics. Oxford Univ. Press, New York (2002)

    MATH  Google Scholar 

  4. Gusev, A. A., Gerdt, V. P., Chuluunbaatar, O., Chuluunbaatar, G. , Vinitsky, S.I., Derbov, V.L., Gozdz, A.: Symbolic-numerical algorithms for solving the parametric self-adjoint 2D elliptic boundary-value problem using high-accuracy finite element method. V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, 151-166 (2017)

    Google Scholar 

  5. Gusev, A. A., Gerdt, V. P., Chuluunbaatar, O., Chuluunbaatar, G. , Vinitsky, S.I., Derbov, V.L., Gozdz, A.: Symbolic-numerical algorithm for generating interpolation multivariate hermite polynomials of high-accuracy finite element method. V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, 134-150 (2017)

    Google Scholar 

  6. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Derbov, V.L., Hai, L.L., Kazaryan, E.M., Sarkisyan, H.A.: Finite element method for calculating spectral and optical characteristics of axially symmetric quantum dots. SPIE 10717, 1071712 (2018)

    Google Scholar 

  7. Vinasco, J.A., Radu, A., Tiutiunnyk, A., Restrepo, R.L., Laroze, D., Feddi, E., Mora-Ramos, M.E., Morales, A.L., Duque, C.A.: Revisiting the adiabatic approximation for bound states calculation in axisymmetric and asymmetrical quantum structures. Superlattices and Microstructures 138, 106384 (2020)

    Article  Google Scholar 

  8. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)

    MATH  Google Scholar 

  9. Chuluunbaatar, O., Gusev, A.A., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I., Abrashkevich, A.G., Kaschiev, M.S., Serov, V.V.: POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. Comput. Phys. Commun. 178, 301–330 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gusev, A., Vinitsky,S. Chuluunbaatar, O., Gerdt, V., Hai, L. L., Rostovtsev, V.: Symbolic-Numerical Calculations of High-\(|m|\) Rydberg States and Decay Rates in Strong Magnetic Fields. V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, 155-171, (2012)

    Google Scholar 

  11. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I. and Abrashkevich, A.G.: KANTBP 2.0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. Comput. Phys. Commun. 179, 685–693 (2008)

    Google Scholar 

  12. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP: A program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem. Comput. Phys. Commun. 181, 1358–1375 (2009)

    Article  ADS  Google Scholar 

  13. Derbov V.L., Serov V.V., Vinitsky S.I., Gusev A.A., Chuluunbaatar O., Kazaryan E.M., Sarkisyan A.A.: On Solving the Low-Dimensional Boundary Value Problems of Quantum Mechanics by Kantorovich Method - Reduction to Ordinary Differential Equations. Izvestiya of Saratov University. Physics: Izv. Saratov Univ. (N. S.), Ser. Physics, 10, iss.1, 4–17 (2010), https://fizika.sgu.ru/en/node/239

  14. Vinitsky,S., Gusev, A.A., Chuluunbaatar, O., Derbov,V.L., Zotkina, A.S.: On calculations of two-electron atoms in spheroidal coordinates mapping on hypersphere Proc. of SPIE 9917, 99172Z (2016). https://doi.org/10.1117/12.2229528

  15. Migdal, A.B.: Qualitative Methods in Quantum Theory (A.J. Leggett, Ed.) (1st ed.). CRC Press (1977)

    Google Scholar 

  16. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Kazaryan, E.M., Sarkisyan, H.A.: The application of adiabatic method for the description of impurity states in quantum nanostructures. Journal of Physics: Conference Series 248, 012047 (2010)

    Google Scholar 

  17. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Derbov, V.L., Kazaryan, E.M., Kostanyan, A.A., Sarkisyan, H.A.: Adiabatic approach to the problem of a quantum well with a hydrogen - like impurity. Phys. Atom. Nucl. 73, 331–338 (2010)

    Article  ADS  Google Scholar 

  18. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Dvoyan, K.G., Kazaryan, E.M., Sarkisyan, H.A., Derbov, V.L., Klombotskaya, A.S., Serov, V.V.: Adiabatic description of nonspherical quantum dot models. Phys. Atom. Nucl. 75, 1210–1226 (2012)

    Article  ADS  Google Scholar 

  19. Gusev, A.A., Chuluunbaatar, O., Hai, L,L., Vinitsky, S.I., Kazaryan, E.M., Sarkisyan, H.A., Derbov, V.L.: Spectral and optical characteristics of spheroidal quantum dots. Journal of Physics: Conference Series 393, 012011 (2012)

    Google Scholar 

  20. Gusev, A.A., Hai, L.L., Vinitsky, S.I., Chuluunbaatar, O., Derbov, V.L., Klombotskaya, A.S., Dvoyan, K.G., Sarkisyan, H.A.: Analytical and numerical calculations of spectral and optical characteristics of spheroidal quantum dots. Phys. Atom. Nucl. 76, 1033–1055 (2013)

    Article  ADS  Google Scholar 

  21. Hayrapetyan, D.B., Chalyan, A.V., Kazaryan, E.M., Sarkisyan, H.A.: Direct interband light absorption in conical quantum dot. J. Nanomaterials 2015, 915742 (2015)

    Article  Google Scholar 

  22. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  23. Oguchi, T.: Eigenvalues of spheroidal wave functions and their branch points for complex values of propagation constant. Radio Sci. 5(8–9), 1207–1214 (1970)

    Article  ADS  Google Scholar 

  24. Skorokhodov, S.L., Khristoforov, D.V.: Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions. Comput. Math. Math. Phys. 46(7), 1132–1146 (2006)

    Article  MathSciNet  Google Scholar 

  25. Berry, M.V. and Wilkinson, M: Diabolical points in the spectra of triangles. Proc.R. Soc. Lond. A 392, 15–43 (1984)

    Google Scholar 

  26. Pockels, F.: Ăśber die Partielle Differential-Gleichung \(\Delta u + k^{2}u = 0\) und deren Auftreten in der Mathematischen Physik. B.G. Teubner, Leipzig (1891)

    MATH  Google Scholar 

  27. McCartin, B.J.: Laplacian Eigenstructure of the Equilateral Triangle. Hikari Ltd., Ruse, Bulgaria (2011)

    MATH  Google Scholar 

  28. Anselm, A.: Introduction to Semiconductor Theory. Mir, Moscow (1982).in Russian

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gusev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Derbov, V.L. et al. (2022). Crossing Points in Spectra and Light Absorption in Spheroidal and Cone-Shaped Quantum Dots. In: Blaschke, D., Firsov, D., Papoyan, A., Sarkisyan, H.A. (eds) Optics and Its Applications. Springer Proceedings in Physics, vol 281. Springer, Cham. https://doi.org/10.1007/978-3-031-11287-4_11

Download citation

Publish with us

Policies and ethics