Skip to main content
Log in

Atomic propensity rules in quantum plasmas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The atomic propensity rules are investigated in weakly coupled degenerate quantum plasmas including the electron-exchange effect. The excitation probabilities, excitation cross sections, and orientation parameter are obtained as functions of the impact parameter, collision energy, electron-exchange parameter, Fermi energy, and plasmon energy. The results show that the electron-exchange effect enhances the excitation probabilities as well as the excitation cross sections. It is also found that the influence of the electron-exchange enhances the propensity of the \(1s \rightarrow 2p_{-1}\) excitation channel in weakly coupled degenerate quantum plasmas. It is also shown that the influence of the Fermi energy enhances the propensity of the \(1s \rightarrow 2p_{-1}\) excitation channel. However, it is found that the influence of the plasmon energy suppresses the propensity of the \(1s \rightarrow 2p_{-1}\) excitation channel in weakly coupled degenerate quantum plasmas. The detailed investigation on the variation of excitation preference is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.C. Deb, N.C. Sil, J. Phys. B 17, 3587 (1984)

    Article  ADS  Google Scholar 

  2. R.K. Janev, L.P. Presnyakov, V.P. Shevelko, Physics of Highly Charged Ions (Springer-Verlag, Berlin, 1985)

  3. H. Tawara, T. Kato, At. Data Nucl. Data Tables 36, 167 (1987)

    Article  ADS  Google Scholar 

  4. I.I. Sobel'man, L.A. Vainshtein, E.A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, 2nd ed. (Springer-Berlag, Berlin, 1995)

  5. S.V. Khristenko, A.I. Maslov, V.P. Shevelko, Molecules and Their Spectroscopic Properties (Springer, Berlin, 1998)

  6. V.P. Shevelko, H. Tawara, Atomic Multielectron Processes (Springer, Berlin, 1998)

  7. S.P. Khare, Introduction to the Theory of Collisions of Electrons with Atoms and Molecules (Kluwer, New York, 2002)

  8. Y.-D. Jung, J.-S. Yoon, J. Phys. B 29, 3549 (1996)

    Article  ADS  Google Scholar 

  9. H.F. Beyer, V.P. Shevelko, Introduction to the Physics of Highly Charged Ions (Institute of Physics, Bristol, 2003)

  10. S. Kar, Y.K. Ho, Phys. Rev. E 70, 066411 (2004)

    Article  ADS  Google Scholar 

  11. A. Ghoshal, Y.K. Ho, Phys. Rev. E 81, 016403 (2010)

    Article  ADS  Google Scholar 

  12. M.K. Pandey, Y.-C. Lin, Y.K. Ho, Phys. Plasmas 19, 062104 (2012)

    Article  ADS  Google Scholar 

  13. M.K. Pandey, Y.-C. Lin, Y.K. Ho, Phys. Plasmas 20, 022104 (2013)

    Article  ADS  Google Scholar 

  14. N. Andersen, D. Dowek, A. Dubois, J.P. Hansen, S.E. Nielsen, Phys. Scr. 42, 266 (1990)

    Article  ADS  Google Scholar 

  15. R. Srivastava, Y. Itikawa, K. Sakimoto, Phys. Rev. A 43, 4736 (1991)

    Article  ADS  Google Scholar 

  16. J.P. Hansen, J.M. Hansteen, J. Phys. B 25, L183 (1992)

    Article  ADS  Google Scholar 

  17. N.A. Cherepkov, Adv. At. Mol. Phys. 34, 207 (1994)

    Article  ADS  Google Scholar 

  18. N. Andersen, K. Bartschat, Polarization, Alignment, and Orientation in Atomic Collisions, 2nd ed. (Springer, Berlin, 2017)

  19. T.S. Ramazanov, S.K. Kodanova, Phys. Plasmas 8, 5049 (2001)

    Article  ADS  Google Scholar 

  20. Y.A. Omarbakiyeva, C. Fortmann, T.S. Ramazanov, G. Röpke, Phys. Rev. E 82, 026407 (2010)

    Article  ADS  Google Scholar 

  21. K.N. Dzhumagulova, R.U. Masheeva, T.S. Ramazanov, Z. Donkó, Phys. Rev. E 89, 033104 (2014)

    Article  ADS  Google Scholar 

  22. T.S. Ramazanov, K.N. Turekhanova, Phys. Plasmas 12, 102502 (2005)

    Article  ADS  Google Scholar 

  23. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  24. P.K. Shukla, L. Stenflo, Phys. Plasmas 13, 044505 (2006)

    Article  ADS  Google Scholar 

  25. P.K. Shukla, L. Stenflo, R. Bingham, Phys. Lett. A 359, 218 (2006)

    Article  ADS  Google Scholar 

  26. H. Ren, Z. Wu, P.K. Chu, Phys. Plasmas 14, 062102 (2007)

    Article  ADS  Google Scholar 

  27. M. Akbari-Moghanjoughi, Phys. Plasmas 17, 114701 (2010)

    Article  ADS  Google Scholar 

  28. D.-H. Ki, Y.-D. Jung, Appl. Phys. Lett. 99, 121506 (2011)

    Article  ADS  Google Scholar 

  29. P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 83, 885 (2011)

    Article  ADS  Google Scholar 

  30. M. Akbari-Moghanjoughi, P.K. Shukla, Phys. Rev. E 86, 066401 (2012)

    Article  ADS  Google Scholar 

  31. P.K. Shukla, M. Akbari-Moghanjoughi, Phys. Rev. E 87, 043106 (2013)

    Article  ADS  Google Scholar 

  32. P.K. Shukla, B. Eliasson, Phys. Rev. Letts. 108, 165007 (2012)

    Article  ADS  Google Scholar 

  33. K.N. Dzhumagulova, E.O. Shalenov, G.L. Gabdullina, Phys. Plasmas 20, 042702 (2013)

    Article  ADS  Google Scholar 

  34. G.W. Lee, Y.-D. Jung, Phys. Plasmas 20, 062108 (2013)

    Article  ADS  Google Scholar 

  35. T.S. Ramazanov, Zh.A. Moldabekov, M.T. Gabdullin, Phys. Rev. E 92, 023104 (2015)

    Article  ADS  Google Scholar 

  36. K.N. Dzhumagulova, R.U. Masheyeva, T. Ott, P. Hartmann, T.S. Ramazanov, M. Bonitz, Z. Donkó, Phys. Rev. E 93, 063209 (2016)

    Article  ADS  Google Scholar 

  37. B. Eliasson, M. Akbari-Moghanjoughi, Phys. Lett. A 380, 2518 (2016)

    Article  ADS  Google Scholar 

  38. M. Shahmansouri, H. Alinejad, M. Tribeche, J. Plasma Phys. 83, 905830303 (2017)

    Article  Google Scholar 

  39. M. Shahmansouri, B. Farokhi, R. Aboltaman, Phys. Plasmas 24, 054505 (2017)

    Article  ADS  Google Scholar 

  40. H.A. Bethe, R. Jackiw, Intermediate Quantum Mechanics, 3rd ed. (Benjamin, Menlo Park, 1986)

  41. J.H. McGuire, Electron Correlation Dynamics in Atomic Collisions (Cambridge University Press, Cambridge, 1997)

  42. J.-S. Yoon, Y.-D. Jung, Phys. Plasmas 3, 3291 (2008)

    Article  ADS  Google Scholar 

  43. G. Arfken, Mathematical Methods for Physicists, 2nd ed. (Academic Press, New York, 1970)

  44. Y.-D. Jung, I.-D. Cho, Phys. Rev. E 52, 5333 (1995)

    Article  ADS  Google Scholar 

  45. M.-Y. Song, Y.-D. Jung, Phys. Lett. A 357, 355 (2006)

    Article  ADS  Google Scholar 

  46. Y.-D. Jung, Phys. Plasmas 19, 113301 (2012)

    Article  ADS  Google Scholar 

  47. Y.-D. Jung, W.-P. Hong, J. Appl. Phys. 113, 123303 (2013)

    Article  ADS  Google Scholar 

  48. F. Haas, G. Manfredi, M. Feix, Phys. Rev. E 62, 2763 (2000)

    Article  ADS  Google Scholar 

  49. M. Marklund, B. Eliasson, P.K. Shukla, Phys. Rev. E 76, 067401 (2007)

    Article  ADS  Google Scholar 

  50. P.A. Andreev, Phys. Rev. E 91, 033111 (2015)

    Article  ADS  Google Scholar 

  51. O.G. Bakunin, Turbulence and Diffusion (Springer, Berlin, 2008)

  52. S.-C. Na, Y.-D. Jung, Astrophys. J. 707, 539 (2009)

    Article  ADS  Google Scholar 

  53. P.H. Diamond, S.-I. Itoh, K. Itoh, Modern Plasma Physics, Vol. 1: Physical Kinetics of Turbulent Plasmas (Cambridge University Press, Cambridge, 2010)

  54. O.G. Bakunin, Chaotic Flows (Springer, Berlin, 2011)

  55. M.-J. Lee, Y.-D. Jung, Phys. Plasmas 22, 124501 (2015)

    Article  ADS  Google Scholar 

  56. M.-J. Lee, Y.-D. Jung, Astropart. Phys. 74, 58 (2016)

    Article  ADS  Google Scholar 

  57. R.L. Liboff, Kinetic Theory, Classical, Quantum, and Relativistic Descriptions, 3rd ed. (Springer, New York, 2003)

  58. R. Soto, Kinetic Theory and Transport Phenomena (Oxford University Press, Oxford, 2016)

  59. G.P. Zhao, L. Liu, J.G. Wang, R.K. Janev, Phys. Plasmas 24, 103504 (2017)

    Article  ADS  Google Scholar 

  60. B.V. Somov, Plasma Astrophysics, Part I: Fundamentals and Practice (Springer, New York, 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Dae Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MJ., Jung, YD. Atomic propensity rules in quantum plasmas. Eur. Phys. J. Plus 134, 38 (2019). https://doi.org/10.1140/epjp/i2019-12395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12395-6

Navigation