Skip to main content
Log in

A mathematical analysis of a circular pipe in rate type fluid via Hankel transform

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, helices of a generalized Oldroyd-B fluid have been analyzed through a horizontal circular pipe. The circular pipe is taken in the form of a circular cylinder. The analytical solutions are determined for velocities and shear stresses due to the unsteady helical flow of a generalized Oldroyd-B fluid. The general solutions are derived by using finite Hankel and discrete Laplace transforms to satisfy the imposed conditions and the governing equations. The special cases of our general solutions are also perused performing the same motion for fractional and ordinary Maxwell fluid, fractional and ordinary second-grade fluid and fractional and ordinary viscous fluid as well. The graphical illustration is depicted in order to explore how the two velocities and shear stresses profiles are impacted by different rheological parameters, for instance, fractional parameter, relaxation time, retardation time, material non-zero constant, dynamic viscosity and few others. Finally, ordinary and fractional operators have various similarities and differences on a circular pipe for helicoidal behavior of fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.I. Taylor, Philos. Trans. A 223, 289 (1923)

    Article  ADS  Google Scholar 

  2. N.D. Waters, M.J. King, J. Phys. D 4, 204 (1971)

    Article  ADS  Google Scholar 

  3. K.D. Rahaman, H. Ramkissoon, J. Non-Newtonian Fluid Mech. 57, 27 (1995)

    Article  Google Scholar 

  4. T. Hayat, A.M. Siddiqui, S. Asghar, Int. J. Eng. Sci. 39, 135 (2001)

    Article  Google Scholar 

  5. T. Hayat, M. Khan, M. Ayub, Math. Comput. Model. 43, 16 (2006)

    Article  Google Scholar 

  6. T. Qi, Y. Xu, Acta Mech. Sin. 23, 9 (2007)

    Article  Google Scholar 

  7. C. Fetecau, A. Awan, F. Corina, Bull. Math. Soc. Sci. Math. Roum. 52, 117 (2009)

    Google Scholar 

  8. F. Corina, C. Fetecau, M. Imran, Math. Rep. 11, 145 (2009)

    Google Scholar 

  9. I. Siddique, D. Vieru, Acta Mech. Sin. 25, 777 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. F. Corina, T. Hayat, C. Fetecau, J. Non-Newtonian Fluid Mech. 153, 191 (2008)

    Article  Google Scholar 

  11. M. Jamil, C. Fetecau, Nonlinear Anal. Real-World Appl. 11, 4302 (2010)

    Article  MathSciNet  Google Scholar 

  12. A.S. Parveen, A. Ara, N. Khan, Commun. Nonlinear Sci. Numer. Simul. 14, 3309 (2009)

    Article  ADS  Google Scholar 

  13. Q. Haitao, J. Hui, Nonlinear Anal. RWA 10, 2700 (2009)

    Article  Google Scholar 

  14. M.A. Imran, M. Tahir, M. Javaid, M. Imran, J. Comput. Theor. Nanosci. 13, 3405 (2016)

    Article  Google Scholar 

  15. M. Kamran, M. Imran, M. Athar, Meccanica 48, 1215 (2013)

    Article  MathSciNet  Google Scholar 

  16. L. Chunrui, L. Zheng, Y. Zhang, L. Ma, X. Zhang, Commun. Nonlinear Sci. Numer. Simul. 17, 5026 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Athar, M. Kamran, M. Imran, Meccanica 47, 603 (2012)

    Article  MathSciNet  Google Scholar 

  18. D. Tong, Y. Liu, Int. J. Eng. Sci. 43, 281 (2005)

    Article  Google Scholar 

  19. A.A. Zafar, C. Fetecau, I.A. Mirza, Math. Rep. 18, 334 (2016)

    Google Scholar 

  20. M. Kamran, M. Imran, M. Athar, ISRN Math. Phys. 2012, 374670 (2012)

    Google Scholar 

  21. C.H.R. Friedrich, Rheol. Acta 30, 151 (1991)

    Article  Google Scholar 

  22. K.A. Abro, I. Khan, Chin. J. Phys. 55, 1583 (2017)

    Article  Google Scholar 

  23. P.N. Srivastava, Arch. Mech. Stos. 18, 145 (1966)

    Google Scholar 

  24. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus models and numerical methods, in Series on Complexity, Nonlinearity and Chaos (World Scientific, 2012)

  25. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  26. A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  27. M. Toufik, A. Atangana, Eur. Phys. J. Plus 132, 444 (2017)

    Article  Google Scholar 

  28. J. Hristov, Progr. Fract. Differ. Appl. 3, 255 (2017)

    Article  Google Scholar 

  29. A. Atangana, J.F. Gómez Aguilar, Eur. Phys. J. Plus 133, 166 (2018)

    Article  Google Scholar 

  30. K.M. Saad, A. Atangana, D. Baleanu, Chaos 28, 063109 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. K.M. Owolabi, Chaos, Solitons Fractals 103, 544 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 44, 304 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. K.M. Saad, D. Baleanu, A. Atangana, Comput. Appl. Math. 37, 5203 (2018)

    Article  MathSciNet  Google Scholar 

  34. I. Koca, Eur. Phys. J. Plus 133, 100 (2018)

    Article  Google Scholar 

  35. A. Atangana, Physica A 505, 688 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. K.A. Abro, M. Hussain, M.M. Baig, Int. J. Adv. Appl. Sci. 4, 80 (2017)

    Article  Google Scholar 

  37. A. Khan, K.A. Abro, A. Tassaddiq, I. Khan, Entropy 19, 1 (2017)

    Article  Google Scholar 

  38. M.H. Laghari, K.A. Abro, A.A. Shaikh, Int. J. Adv. Appl. Sci. 4, 97 (2017)

    Article  Google Scholar 

  39. T. Abdeljawad, D. Baleanu, Commun. Nonlinear Sci. Numer. Simul. 16, 4682 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  40. R. Abu-Saris, Q.M. Al-Mdallal, Fract. Calc. Appl. Anal. 16, 613 (2013)

    Article  MathSciNet  Google Scholar 

  41. Q.M. Al-Mdallal, M.I. Syam, Commun. Nonlinear Sci. Numer. Simul. 17, 2299 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  42. Q.M. Al-Mdallal, M.A. Hajji, Fract. Calc. Appl. Anal. 18, 1423 (2015)

    Article  MathSciNet  Google Scholar 

  43. M. Jamil, K.A. Abro, N.A. Khan, Nonlinear Eng. 4, 191 (2015)

    Google Scholar 

  44. M. Jamil, Nonlinear Eng. 4, 105 (2015)

    Google Scholar 

  45. C. Fetecau, A. Mahmood, Corina Fetecau, D. Vieru, Comput. Math. Appl. 56, 3096 (2008)

    Article  MathSciNet  Google Scholar 

  46. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications (Academic Press, San Diego, California, USA, 1999)

  47. F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models (Imperial College Press, London, 2010)

  48. M. Athar, M. Kamran, M. Imran, Meccanica 47, 603 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali Abro, K., Khan, I. & Gómez-Aguilar, J.F. A mathematical analysis of a circular pipe in rate type fluid via Hankel transform. Eur. Phys. J. Plus 133, 397 (2018). https://doi.org/10.1140/epjp/i2018-12186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12186-7

Navigation