Skip to main content
Log in

Employing an analytical approach to study the thermo-mechanical vibration of a defective size-dependent graphene nanosheet

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this study, an analytical method is developed to study the free vibration of a defected nano graphene sheet coupled with temperature change and embedded on foundation based on Reddy’s third-order shear deformation plate theory. The graphene sheet may be opposed to the structural defect during the production process. Therefore, it is important to analyze the vibration behavior of graphene sheet. Here, some of the defects are modelled as a hole. Reddy’ third-order shear deformation plate theory is employed because it satisfies the zero shear stress condition at the free surfaces and need not use any shear correction coefficient to obtain equations of motion of the defected nanosheet. The interaction of the defected graphene sheet with a viscoelastic medium is simulated as a visco-Pasternak foundation. The influence of the surrounding viscoelastic medium on the natural frequencies is analyzed. To get the equations of dynamic equilibrium and natural boundary conditions of the nanosheet, the Hamilton’s principle is implemented. The presented method is verified by comparing the results with their counterparts reported in the open literature and good agreement is observed. Effects of different boundary conditions such as C-C, S-S, C-F, C-S, inner-radius-outer-radius ratio, Winkler foundation parameter, damping modulus, shear modulus, nonlocal parameter and temperature change on the frequency of the defected graphene sheet are examined. Various natural frequencies in nondimensional form and mode shapes are developed. The results show that, by increasing the inner-radius-outer-radius ratio, the natural frequency has an increasing behavior for all kinds of boundary condition. It is observed that increasing the size of defect has a significant effect on the natural frequency. Moreover, it can be concluded that decreasing the nonlocal parameter as the small-scale effect makes the plate stiffer. Therefore, the natural frequency of the nanoplate increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Reddy, Theory and Analysis of Elastic Plates and Shells (CRC Press, 2006)

  2. R. Ansari, R. Gholami, Compos. Struct. 154, 707 (2016)

    Article  Google Scholar 

  3. Y. Zhou, J. Zhu, Compos. Struct. 153, 712 (2016)

    Article  Google Scholar 

  4. T. Van Do, D.K. Nguyen, N.D. Duc, D.H. Doan, T.Q. Bui, Thin-Walled Struct. 119, 687 (2017)

    Article  Google Scholar 

  5. P. Raghu, K. Preethi, A. Rajagopal, J.N. Reddy, Compos. Struct. 139, 13 (2016)

    Article  Google Scholar 

  6. T.Q. Bui et al., Compos. Part B Eng. 92, 218 (2016)

    Article  Google Scholar 

  7. S.-Y. Lee, S.-C. Wooh, S.-S. Yhim, Int. J. Solids Struct. 41, 1879 (2004)

    Article  Google Scholar 

  8. L.S. Ma, T.J. Wang, Int. J. Solids Struct. 41, 85 (2004)

    Article  Google Scholar 

  9. Y.X. Hao, W. Zhang, J. Yang, Compos. Part B Eng. 42, 402 (2011)

    Article  Google Scholar 

  10. A.R. Saidi, A. Rasouli, S. Sahraee, Compos. Struct. 89, 110 (2009)

    Article  Google Scholar 

  11. K.S. Novoselov et al., Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  12. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  13. A. Belhadj, A. Boukhalfa, S.A. Belalia, Eur. Phys. J. Plus 132, 513 (2017)

    Article  Google Scholar 

  14. F. Ebrahimi, S.H.S. Hosseini, Eur. Phys. J. Plus 132, 172 (2017)

    Article  Google Scholar 

  15. S. Sahmani, A.M. Fattahi, Eur. Phys. J. Plus 132, 231 (2017)

    Article  Google Scholar 

  16. F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 132, 449 (2017)

    Article  Google Scholar 

  17. H. Wu, S. Kitipornchai, J. Yang, Mater. Des. 132, 430 (2017)

    Article  Google Scholar 

  18. H.-S. Shen, Y. Xiang, F. Lin, D. Hui, Compos. Part B Eng. 119, 67 (2017)

    Article  Google Scholar 

  19. R. Nazemnezhad, M. Zare, S. Hosseini-Hashemi, Appl. Math. Model. 47, 459 (2017)

    Article  MathSciNet  Google Scholar 

  20. H.-S. Shen, Y. Xiang, F. Lin, Thin-Walled Struct. 118, 229 (2017)

    Article  Google Scholar 

  21. B. Yang, S. Kitipornchai, Y.-F. Yang, J. Yang, Appl. Math. Model. 49, 69 (2017)

    Article  MathSciNet  Google Scholar 

  22. S.F.A. Namin, R. Pilafkan, Physica E 93, 257 (2017)

    Article  ADS  Google Scholar 

  23. L.W. Zhang, Y. Zhang, K.M. Liew, Compos. Part B Eng. 118, 96 (2017)

    Article  Google Scholar 

  24. L.W. Zhang, Y. Zhang, K.M. Liew, Appl. Math. Model. 49, 691 (2017)

    Article  MathSciNet  Google Scholar 

  25. R. Ansari, S. Ajori, B. Motevalli, Superlattices Microstruct. 51, 274 (2012)

    Article  ADS  Google Scholar 

  26. E. Allahyari, M. Fadaee, Compos. Part B Eng. 85, 259 (2016)

    Article  Google Scholar 

  27. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  28. S. Hosseini-Hashemi, M. Es’Haghi, H.R.D. Taher, M. Fadaie, J. Sound Vib. 329, 3382 (2010)

    Article  ADS  Google Scholar 

  29. M. Fadaee, Meccanica 50, 2325 (2015)

    Article  MathSciNet  Google Scholar 

  30. M.R. Talabi, A.R. Saidi, Appl. Math. Model. 37, 7664 (2013)

    Article  MathSciNet  Google Scholar 

  31. J.N. Reddy, Int. J. Solids Struct. 20, 881 (1984)

    Article  Google Scholar 

  32. J.N. Reddy, Energy Principles and Variational Methods in Applied Mechanics (John Wiley & Sons, Inc., 2017)

  33. J.N. Reddy, Int. J. Numer. Methods Eng. 47, 663 (2000)

    Article  Google Scholar 

  34. M. Es’haghi, S.H. Hashemi, M. Fadaee, Int. J. Mech. Sci. 53, 585 (2011)

    Article  Google Scholar 

  35. S. Hosseini-Hashemi, M. Es’haghi, H.R.D. Taher, Compos. Struct. 92, 1333 (2010)

    Article  Google Scholar 

  36. M.R. Spiegel, Mathematical Handbook of Formulas and Tables (McGraw-Hill, Inc., 1968)

  37. T. Irie, G. Yamada, S. Aomura, J. Appl. Mech. 47, 652 (1980)

    Article  ADS  Google Scholar 

  38. N. Ding, X. Chen, C.-M.L. Wu, Sci. Rep. 6, 31499 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Allahyari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahyari, E., Kiani, A. Employing an analytical approach to study the thermo-mechanical vibration of a defective size-dependent graphene nanosheet. Eur. Phys. J. Plus 133, 223 (2018). https://doi.org/10.1140/epjp/i2018-12058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12058-2

Navigation