Skip to main content
Log in

RETRACTED ARTICLE: A novel approach for free vibration of circular/annular sector plates using Reddy’s third order shear deformation theory

  • Published:
Meccanica Aims and scope Submit manuscript

This article was retracted on 17 May 2017

Abstract

A new exact closed-form solution based on Reddy’ third-order shear deformation plate theory for free vibration of thick circular/annular sector plates is presented. Characteristic equations are given for sector plates having hard simply supported radial edges and all combinations of free, soft simply supported, hard simply supported and clamped boundary conditions along the circular edges. Based on the present solution, the governing equations of the vibrated thick circular/annular sector plates were exactly solved by introducing the new auxiliary and potential functions as well as using the separation method of variables. To clarify the efficiency and accuracy of the present solution, several comparison studies are examined with the available data in the literature. Also, natural frequencies of the circular/annular sector plates are presented for different thickness–radius ratios, inner–outer radius ratios, sector angle values and boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ramakrishnan R, Kunukkasseril VX (1973) Free vibration of annular sector plate. J Sound Vib 30(1):127–129

    Article  ADS  Google Scholar 

  2. Bhattacharya AP, Bhowmic KK (1975) Free vibration of a sector plate. J Sound Vib 41:503–505

    Article  ADS  MATH  Google Scholar 

  3. Bapu Rao MN, Guruswamy P, Sampathkumaran KS (1977) Finite element analysis of thick annular and sector plates. Nucl Eng Des 41:247–255

    Article  Google Scholar 

  4. Irie T, Yamada G, Ito F (1979) Free vibration of polar orthotropic sector plates. J Sound Vib 67:89–100

    Article  ADS  MATH  Google Scholar 

  5. Cheung MS, Chan MYT (1981) Static and dynamic analysis of thin and thick sectorial plates by the finite strip method. Compos Struct 14:79–88

    Article  Google Scholar 

  6. Srinivasan RS, Thiruvenkatachari V (1983) Free vibration of annular sector plates by an integral equation technique. J Sound Vib 80:275–279

    MATH  Google Scholar 

  7. Srinivasan RS, Thiruvenkatachari V (1985) Free vibration of transverse isotropic annular sector Mindlin plates. J Sound Vib 101:193–210

    Article  ADS  Google Scholar 

  8. Harik IE, Molaghasemi HR (1989) Analytical solution to free vibration of sector plates. J Eng Mech 115:2709–2722

    Article  Google Scholar 

  9. Kim CS, Dickinson SM (1989) On the free, transverse vibration of annular and circular, thin, sectorial plates subject to certain complicating effects. J Sound Vib 134:407–421

    Article  ADS  Google Scholar 

  10. Mizusawa T (1991) Vibration of thick annular sector plates using semi-analytical methods. J Sound Vib 150:245–259

    Article  ADS  Google Scholar 

  11. Xiang Y, Liew KM, Kitipornchai S (1993) Transverse vibration of thick annular sector plates. J Eng Mech 119(8):1579–1597

    Article  Google Scholar 

  12. Huang CS, Leissa AW, Mcgee OG (1993) Exact analytical solutions for free vibration of sectorial plates with simply supported radial edges. J Appl Mech-Transaction ASME 60:478–483

    Article  MATH  Google Scholar 

  13. Huang CS, Mcgee OG, Leissa AW (1994) Exact analytical solutions for free vibration of thick sectorial plates with simply supported radial edges. Int J Solid Struct 31:1609–1631

    Article  MathSciNet  MATH  Google Scholar 

  14. Mcgee OG, Huang CS, Leissa AW (1995) Comprehensive exact solutions for free vibrations of thick annular sectorial plates with simply supported radial edges. Int J Mech Sci 37(5):537–566

    Article  MATH  Google Scholar 

  15. Liu FK, Liew KM (1999) Free vibration analysis of Mindlin sector plates: numerical solutions by differential quadrature method. Comput Method Appl Mech Eng 177:77–92

    Article  ADS  MATH  Google Scholar 

  16. Liew KM, Liu FL (2000) Differential quadrature method for vibration analysis of shear deformable annular sector plates. J Sound Vib 230:335–356

    Article  ADS  Google Scholar 

  17. Liew KM, Ng TY, Wang BP (2001) Vibration of annular sector plates from three-dimensional analysis. J Acoust Soc Am 110:233–242

    Article  ADS  Google Scholar 

  18. Li X, Zhong H, He Y (2003) Free vibration analysis of sectorial plates by the triangular differential quadrature method. J. Qinhua (2003)

  19. Houmat A (2004) Three-dimensional hierarchical finite element free vibration analysis of annular sector plates. J Sound Vib 276:181–193

    Article  ADS  Google Scholar 

  20. Seok J, Tiersten HF (2004) Free vibration of annular sector cantilever plates. Part 1: out-of-plane motion. J Sound Vib 271:757–772

    Article  ADS  Google Scholar 

  21. Wang X, Wang Y (2004) Free vibration analysis of thin sector plates by the new version of differential quadrature method. Comput Method Appl Mech Eng 193:3957–3971

    Article  ADS  MATH  Google Scholar 

  22. Sharma A, Sharda HB, Nath Y (2005) Stability and vibration of Mindlin sector plates: an analytical approach. AIAA J 43:1109–1116

    Article  ADS  Google Scholar 

  23. Yongqiang L, Jian L (2007) Free vibration analysis of circular and annular sectorial thin plates using curve strip Fourier p-element. J Sound Vib 305:457–466

    Article  ADS  Google Scholar 

  24. Zhou D, Lo SH, Cheung YK (2009) 3-D vibration analysis of annular sector plates using the Chebyshev–Ritz method. J Sound Vib 320:421–437

    Article  ADS  Google Scholar 

  25. Whitney JM, Sun CT (1973) A higher order theory for extensional motion of laminated composites. J Sound Vib 30:85–97

    Article  ADS  MATH  Google Scholar 

  26. Lo KH, Christensen RM, Wu EM (1977) A high-order theory of plate deformation part 1: homogeneous plates. J Appl Mech 44:663–668

    Article  MATH  Google Scholar 

  27. Kant T (1982) Numerical analysis of thick plates. Comput Method Appl Mech Eng 31:1–18

    Article  ADS  MATH  Google Scholar 

  28. Bhimaraddi A, Stevens LK (1984) A higher order theory for free vibration of orthotropic, homogeneous, and laminated rectangular plates. J Appl Mech 51:195–198

    Article  Google Scholar 

  29. Reddy JN (1984) A refined nonlinear theory of plates with transverse shear deformation. Int J Solid Struct 20:881–896

    Article  MATH  Google Scholar 

  30. Hanna NF, Leissa AW (1994) A higher order shear deformation theory for the vibration of thick plates. J Sound Vib 170:545–555

    Article  ADS  MATH  Google Scholar 

  31. Reddy JN, Phan ND (1985) Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory. J Sound Vib 98:157–170

    Article  ADS  MATH  Google Scholar 

  32. Doong JL (1987) Vibration and stability of an initially stressed thick plate according to a higher order deformation theory. J Sound Vib 113:425–440

    Article  ADS  Google Scholar 

  33. Matsunaga H (1994) Free vibration and stability of thick elastic plates subjected to in-plane forces. Int J Solid Struct 31(22):3113–3124

    Article  MATH  Google Scholar 

  34. Speigel R (1999) Mathematical handbook of formulas and tables, Schaum’s outline series. McGraw-Hill, Singapore

    Google Scholar 

  35. Tranter CJ (1968) Bessel functions with some physical applications. English University Press

  36. Dauge M, Yosibash Z (2000) Boundary layer realization in thin elastic three dimensional domains and two-dimensional hierarchic plate models. Int J Solid Struct 37:2443–2471

    Article  MATH  Google Scholar 

  37. Hosseini-Hashemi Sh, Es’haghi M, Taher HRD, Fadaie M (2010) Exact closed-form frequency equations for thick circular plates using a third-order shear deformation theory. J Sound Vib 329:3382–3396

    Article  ADS  Google Scholar 

  38. Hosseini-Hashemi Sh, Fadaee M, Es’haghi M (2010) A novel approach for in-plane/out-of-plane frequency analysis of functionally graded circular/annular plates. Int J Mech Sci 52:1025–1035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fadaee.

Additional information

The Editor in Chief has decided to retract this article for reasons of redundant (duplicate) publication. The article was examined following the COPE guidelines with regard to suspected redundant publication in a published manuscript. Several passages and figures in the article have been used without proper attribution and acknowledgement. The most original source papers are:

International Journal of Mechanical Sciences Volume 79, February 2014, Pages 1–14 Accurate approach implementation in vibration analysis of thick sector plates Mehdi Es'haghi doi:10.1016/j.ijmecsci.2013.11.007

International Journal of Mechanical Sciences Volume 56, Issue 1, March 2012, Pages 35–49 Benchmark solution for transverse vibration of annular Reddy plates H. Bisadic, M. Es'haghia, , H. Roknib, M. Ilkhanic doi:10.1016/j.ijmecsci.2011.12.007

Composite Structures Volume 92, Issue 6, May 2010, Pages 1333–1351 An exact analytical solution for freely vibrating piezoelectric coupled circular/annular thick plates using Reddy plate theory Sh. Hosseini-Hashemia, M. Es’haghia, H. Rokni Damavandi Taherb, , doi:10.1016/j.compstruct.2009.11.006

Journal of Sound and Vibration Volume 329, Issue 16, 2 August 2010, Pages 3382–3396 Exact closed-form frequency equations for thick circular plates using a third-order shear deformation theory Sh. Hosseini-Hashemia, M. Es’haghia, H. Rokni Damavandi Taherb, , M. Fadaiea doi:10.1016/j.jsv.2010.02.024

The author does not agree to this retraction.

An erratum to this article is available at http://dx.doi.org/10.1007/s11012-017-0685-2.

Appendices

Appendix 1

There exist closed-form exact solutions to the characteristic equations of annular sector plates with hard simply supported at the radial edges and all possible combinations of free, soft simply supported, hard simply supported and clamped boundary conditions along circular edges.

Substituting Eqs. (19), (40) and (42) into the boundary conditions, given by Eqs. (47)–(50), yields an eighth-order determinant for the frequency parameters β. For the sake of clarity, the determinant will not be expanded and the characteristic equations are represented in a matrix form. First four rows of the 8 × 8 matrix are related to the boundary conditions at the inner edge, while second ones are related to those at the outer edge. Thus, the 8 × 8 matrix is divided into two 4 × 8 sub-matrices corresponding to boundary conditions at the inner and outer edges of the plate. Following sub-matrices are given for clamped, hard simply supported, soft simply supported and free boundary conditions:

Case 1: Clamped annular sector plates

$$ A = \left| {\begin{array}{*{20}c} {w_{11} \left( {\chi_{1} r^{ * } } \right)} & {w_{12} \left( {\chi_{1} r^{ * } } \right)} & {w_{21} \left( {\chi_{2} r^{ * } } \right)} & {w_{22} \left( {\chi_{2} r^{ * } } \right)} & {w_{31} \left( {\chi_{3} r^{ * } } \right)} & {w_{32} \left( {\chi_{3} r^{ * } } \right)} & 0 & 0 \\ {w^{\prime}_{11} \left( {\chi_{1} r^{ * } } \right)} & {w^{\prime}_{12} \left( {\chi_{1} r^{ * } } \right)} & {w^{\prime}_{21} \left( {\chi_{2} r^{ * } } \right)} & {w^{\prime}_{22} \left( {\chi_{2} r^{ * } } \right)} & {w^{\prime}_{31} \left( {\chi_{3} r^{ * } } \right)} & {w^{\prime}_{32} \left( {\chi_{3} r^{ * } } \right)} & 0 & 0 \\ {a_{1} w^{\prime}_{11} \left( {\chi_{1} r^{ * } } \right)} & {a_{1} w^{\prime}_{12} \left( {\chi_{1} r^{ * } } \right)} & {a_{2} w^{\prime}_{21} \left( {\chi_{2} r^{ * } } \right)} & {a_{2} w^{\prime}_{22} \left( {\chi_{2} r^{ * } } \right)} & {a_{3} w^{\prime}_{31} \left( {\chi_{3} r^{ * } } \right)} & {a_{3} w^{\prime}_{32} \left( {\chi_{3} r^{ * } } \right)} & {\frac{{pw_{41} \left( {\chi_{4} r^{ * } } \right)}}{{r^{ * } }}} & {\frac{{pw_{42} \left( {\chi_{4} r^{ * } } \right)}}{{r^{ * } }}} \\ {\frac{p}{{r^{ * } }}a_{1} w_{11} \left( {\chi_{1} r^{ * } } \right)} & {\frac{p}{{r^{ * } }}a_{1} w_{12} \left( {\chi_{1} r^{ * } } \right)} & {\frac{p}{{r^{ * } }}a_{2} w_{21} \left( {\chi_{2} r^{ * } } \right)} & {\frac{p}{{r^{ * } }}a_{2} w_{22} \left( {\chi_{2} r^{ * } } \right)} & {\frac{p}{{r^{ * } }}a_{3} w_{31} \left( {\chi_{3} r^{ * } } \right)} & {\frac{p}{{r^{ * } }}a_{3} w_{32} \left( {\chi_{3} r^{ * } } \right)} & {w^{\prime}_{41} \left( {\chi_{4} r^{ * } } \right)} & {w^{\prime}_{42} \left( {\chi_{4} r^{ * } } \right)} \\ \end{array} } \right| $$
(75)

where the prime (′) indicates the derivative with respect to the \( r^{*} \); \( w_{ij} \left( {p,\chi_{i} r^{ * } } \right) \) is concisely expressed as \( w_{ij} \left( {\chi_{i} r^{ * } } \right) \); \( \cos \left( {p\theta } \right)e^{i\omega t} \) and \( \sin \left( {p\theta } \right)e^{i\omega t} \) are eliminated for the brevity.

Case 2: Hard simply supported annular sector plates

$$ B = \left| {\begin{array}{*{20}c} {w_{11} \left( {\chi_{1} r^{ * } } \right)} & {w_{12} \left( {\chi_{1} r^{ * } } \right)} & {w_{21} \left( {\chi_{2} r^{ * } } \right)} & {w_{22} \left( {\chi_{2} r^{ * } } \right)} & {w_{31} \left( {\chi_{3} r^{ * } } \right)} & {w_{32} \left( {\chi_{3} r^{ * } } \right)} & 0 & 0 \\ {\mu_{1} \left( {r^{ * } } \right)} & {\mu \mu_{1} \left( {r^{ * } } \right)} & {\mu_{2} \left( {r^{ * } } \right)} & {\mu \mu_{2} \left( {r^{ * } } \right)} & {\mu_{3} \left( {r^{ * } } \right)} & {\mu \mu_{3} \left( {r^{ * } } \right)} & {\mu_{4} \left( {r^{ * } } \right)} & {\mu \mu_{4} \left( {r^{ * } } \right)} \\ {\alpha_{1} \left( {r^{ * } } \right)} & {\alpha \alpha_{1} \left( {r^{ * } } \right)} & {\alpha_{2} \left( {r^{ * } } \right)} & {\alpha \alpha_{2} \left( {r^{ * } } \right)} & {\alpha_{3} \left( {r^{ * } } \right)} & {\alpha \alpha_{3} \left( {r^{ * } } \right)} & {\alpha_{4} \left( {r^{ * } } \right)} & {\alpha \alpha_{4} \left( {r^{ * } } \right)} \\ {\frac{p}{{r^{ * } }}a_{1} w_{11} \left( {\chi_{1} r^{ * } } \right)} & {\frac{p}{{r^{ * } }}a_{1} w_{12} \left( {\chi_{1} r^{ * } } \right)} & {\frac{p}{{r^{ * } }}a_{2} w_{21} \left( {\chi_{2} r^{ * } } \right)} & {\frac{p}{{r^{ * } }}a_{2} w_{22} \left( {\chi_{2} r^{ * } } \right)} & {\frac{p}{{r^{ * } }}a_{3} w_{31} \left( {\chi_{3} r^{ * } } \right)} & {\frac{p}{{r^{ * } }}a_{3} w_{32} \left( {\chi_{3} r^{ * } } \right)} & {w^{\prime}_{41} \left( {\chi_{4} r^{ * } } \right)} & {w^{\prime}_{42} \left( {\chi_{4} r^{ * } } \right)} \\ \end{array} } \right| $$
(76)

where

$$ \mu_{i} \left( {r^{ * } } \right) = - \frac{{\left( {4F + \left( { - 3C + 4F} \right)a_{i} } \right)}}{{3r^{ * 2} }}\left( {\nu r^{ * } w_{i1}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right) +\, r^{ * 2} w_{i1}^{{{\prime \prime }}} \left( {p,\chi_{i} r^{ * } } \right) - \nu p^{2} w_{i1} \left( {p,\chi_{i} r^{ * } } \right)} \right) $$
(77)
$$ \mu_{4} \left( {r^{ * } } \right) = - \frac{{p\left( {3C - 4F} \right)\left( {\nu - 1} \right)}}{{3r^{ * 2} }}\left( {r^{ * } w_{41}^{{\prime }} \left( {p,\chi_{4} r^{ * } } \right) -\, w_{41} \left( {p,\chi_{4} r^{ * } } \right)} \right) $$
(78)
$$ \mu \mu_{i} \left( {r^{ * } } \right) = - \frac{{\left( {4F + \left( { - 3C + 4F} \right)a_{i} } \right)}}{{3r^{ * 2} }}\left( {\nu r^{ * } w_{i2}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right) +\,r^{ * 2} w_{i2}^{{{\prime \prime }}} \left( {p,\chi_{i} r^{ * } } \right) - \nu p^{2} w_{i2} \left( {p,\chi_{i} r^{ * } } \right)} \right) $$
(79)
$$ \mu \mu_{4} \left( {r^{ * } } \right) = - \frac{{p\left( {3C - 4F} \right)\left( {\nu - 1} \right)}}{{3r^{ * 2} }}\left( {r^{ * } w_{42}^{{\prime }} \left( {p,\chi_{4} r^{ * } } \right) - \,w_{42} \left( {p,\chi_{4} r^{ * } } \right)} \right) $$
(80)
$$ \alpha_{i} \left( {r^{ * } } \right) = - \frac{{\left( {4G + \left( { - 3F + 4G} \right)a_{i} } \right)}}{{3r^{ * 2} }}\left( {\nu r^{ * } w_{i1}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right) + r^{ * 2} w_{i1}^{{{\prime \prime }}} \left( {p,\chi_{i} r^{ * } } \right) - \nu p^{2} w_{i1} \left( {p,\chi_{i} r^{ * } } \right)} \right) $$
(81)
$$ \alpha_{4} \left( {r^{ * } } \right) = - \frac{{p\left( {3F - 4G} \right)\left( {\nu - 1} \right)}}{{3r^{ * 2} }}\left( {r^{ * } w_{41}^{{\prime }} \left( {p,\chi_{4} r^{ * } } \right) - w_{41} \left( {p,\chi_{4} r^{ * } } \right)} \right) $$
(82)
$$ \alpha \alpha_{i} \left( {r^{ * } } \right) = - \frac{{\left( {4G + \left( { - 3F + 4G} \right)a_{i} } \right)}}{{3r^{ * 2} }}\left( {\nu r^{ * } w_{i2}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right) + r^{ * 2} w_{i2}^{{{\prime \prime }}} \left( {p,\chi_{i} r^{ * } } \right) - \nu p^{2} w_{i2} \left( {p,\chi_{i} r^{ * } } \right)} \right) $$
(83)
$$ \alpha \alpha_{4} \left( {r^{ * } } \right) = - \frac{{p\left( {3F - 4G} \right)\left( {\nu - 1} \right)}}{{3r^{ * 2} }}\left( {r^{ * } w_{42}^{{\prime }} \left( {p,\chi_{4} r^{ * } } \right) - w_{42} \left( {p,\chi_{4} r^{ * } } \right)} \right) $$
(84)

and i = 1, 2, 3.

Case 3: Soft simply supported annular sector plates

$$ C = \left| {\begin{array}{*{20}c} {w_{11} \left( {\chi_{1} r^{ * } } \right)} & {w_{12} \left( {\chi_{1} r^{ * } } \right)} & {w_{21} \left( {\chi_{2} r^{ * } } \right)} & {w_{22} \left( {\chi_{2} r^{ * } } \right)} & {w_{31} \left( {\chi_{3} r^{ * } } \right)} & {w_{32} \left( {\chi_{3} r^{ * } } \right)} & 0 & 0 \\ {\mu_{1} \left( {r^{ * } } \right)} & {\mu \mu_{1} \left( {r^{ * } } \right)} & {\mu_{2} \left( {r^{ * } } \right)} & {\mu \mu_{2} \left( {r^{ * } } \right)} & {\mu_{3} \left( {r^{ * } } \right)} & {\mu \mu_{3} \left( {r^{ * } } \right)} & {\mu_{4} \left( {r^{ * } } \right)} & {\mu \mu_{4} \left( {r^{ * } } \right)} \\ {\alpha_{1} \left( {r^{ * } } \right)} & {\alpha \alpha_{1} \left( {r^{ * } } \right)} & {\alpha_{2} \left( {r^{ * } } \right)} & {\alpha \alpha_{2} \left( {r^{ * } } \right)} & {\alpha_{3} \left( {r^{ * } } \right)} & {\alpha \alpha_{3} \left( {r^{ * } } \right)} & {\alpha_{4} \left( {r^{ * } } \right)} & {\alpha \alpha_{4} \left( {r^{ * } } \right)} \\ {\eta_{1} \left( {r^{ * } } \right)} & {\eta \eta_{1} \left( {r^{ * } } \right)} & {\eta_{2} \left( {r^{ * } } \right)} & {\eta \eta_{2} \left( {r^{ * } } \right)} & {\eta_{3} \left( {r^{ * } } \right)} & {\eta \eta_{3} \left( {r^{ * } } \right)} & {\eta_{4} \left( {r^{ * } } \right)} & {\eta \eta_{4} \left( {r^{ * } } \right)} \\ \end{array} } \right| $$
(85)

where

$$ \eta_{i} \left( {r^{ * } } \right) = - \frac{{2p\left( {4\left( {3F - 4G} \right) + \left( { - 9C + 24F - 16G} \right)a_{i} } \right)}}{{9r^{ * 2} }}\left( {r^{ * } w_{i1}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right) - w_{i1} \left( {p,\chi_{i} r^{ * } } \right)} \right) $$
(86)
$$ \eta_{4} \left( {r^{ * } } \right) = - \left( {C - \frac{8}{3}F + \frac{16}{9}G} \right)\left( { - \frac{{p^{2} }}{{r^{ * 2} }}w_{41} \left( {p,\chi_{i} r^{ * } } \right) - w_{41}^{{{\prime \prime }}} \left( {p,\chi_{i} r^{ * } } \right) + \frac{{w_{41}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right)}}{{r^{ * } }}} \right) $$
(87)
$$ \eta \eta_{i} \left( {r^{ * } } \right) = - \frac{{2p\left( {4\left( {3F - 4G} \right) + \left( { - 9C + 24F - 16G} \right)a_{i} } \right)}}{{9r^{ * 2} }}\left( {r^{ * } w_{i2}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right) - w_{i2} \left( {p,\chi_{i} r^{ * } } \right)} \right) $$
(88)
$$ \eta \eta_{4} \left( {r^{ * } } \right) = - \left( {C - \frac{8}{3}F + \frac{16}{9}G} \right)\left( { - \frac{{p^{2} }}{{r^{ * 2} }}w_{42} \left( {p,\chi_{i} r^{ * } } \right) -\, w_{42}^{{{\prime \prime }}} \left( {p,\chi_{i} r^{ * } } \right) + \frac{{w_{42}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right)}}{{r^{ * } }}} \right) $$
(89)

Case 4: Free annular sector plates

$$ D = \left| {\begin{array}{*{20}c} {\varGamma_{1} \left( {r^{ * } } \right)} & {\varGamma \varGamma_{1} \left( {r^{ * } } \right)} & {\varGamma_{2} \left( {r^{ * } } \right)} & {\varGamma \varGamma_{2} \left( {r^{ * } } \right)} & {\varGamma_{3} \left( {r^{ * } } \right)} & {\varGamma \varGamma_{3} \left( {r^{ * } } \right)} & {\varGamma_{4} \left( {r^{ * } } \right)} & {\varGamma \varGamma_{4} \left( {r^{ * } } \right)} \\ {\mu_{1} \left( {r^{ * } } \right)} & {\mu \mu_{1} \left( {r^{ * } } \right)} & {\mu_{2} \left( {r^{ * } } \right)} & {\mu \mu_{2} \left( {r^{ * } } \right)} & {\mu_{3} \left( {r^{ * } } \right)} & {\mu \mu_{3} \left( {r^{ * } } \right)} & {\mu_{4} \left( {r^{ * } } \right)} & {\mu \mu_{4} \left( {r^{ * } } \right)} \\ {\alpha_{1} \left( {r^{ * } } \right)} & {\alpha \alpha_{1} \left( {r^{ * } } \right)} & {\alpha_{2} \left( {r^{ * } } \right)} & {\alpha \alpha_{2} \left( {r^{ * } } \right)} & {\alpha_{3} \left( {r^{ * } } \right)} & {\alpha \alpha_{3} \left( {r^{ * } } \right)} & {\alpha_{4} \left( {r^{ * } } \right)} & {\alpha \alpha_{4} \left( {r^{ * } } \right)} \\ {\eta_{1} \left( {r^{ * } } \right)} & {\eta \eta_{1} \left( {r^{ * } } \right)} & {\eta_{2} \left( {r^{ * } } \right)} & {\eta \eta_{2} \left( {r^{ * } } \right)} & {\eta_{3} \left( {r^{ * } } \right)} & {\eta \eta_{3} \left( {r^{ * } } \right)} & {\eta_{4} \left( {r^{ * } } \right)} & {\eta \eta_{4} \left( {r^{ * } } \right)} \\ \end{array} } \right| $$
(90)

where

$$ \begin{aligned} & J_{1} = \frac{{12\left( {1 - \nu } \right)}}{{\delta^{4} }}\left( {\frac{{\hat{I}_{1} }}{2} - 4\hat{I}_{3} + 8\hat{I}_{5} } \right) + \frac{4}{3}\tilde{I}_{5} \beta^{2} ,\,\,\,\,\,\,\,\,\,\,J_{2} = \frac{{12\left( {1 - \nu } \right)}}{{\delta^{4} }}\left( {\frac{{\hat{I}_{1} }}{2} - 4\hat{I}_{3} + 8\hat{I}_{5} } \right) - \frac{16}{9}\hat{I}_{7} \beta^{2} \\ & J_{3} = \frac{{16\left( {3\hat{I}_{5} - 4\hat{I}_{7} } \right)\left( {\nu - 2} \right)}}{{3\delta^{2} }},\,\,\,\,\,\,\,\,\,\,J_{4} = - \frac{{16\left( {3\hat{I}_{5} - 4\hat{I}_{7} } \right)\left( {\nu - 1} \right)}}{{3\delta^{2} }},\,\,\,\,\,\,\,\,\,\,J_{5} = - \frac{{64\hat{I}_{7} }}{{3\delta^{2} }} \\ & J_{6} = \frac{{64\hat{I}_{7} \left( {\nu - 2} \right)}}{{3\delta^{2} }},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,J_{7} = \frac{{16\left( {3\hat{I}_{5} - 4\hat{I}_{7} } \right)}}{{3\delta^{2} }},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,J_{8} = - \frac{{64\hat{I}_{7} \left( {\nu - 3} \right)}}{{3\delta^{2} }} \\ \end{aligned} $$
(91)

and

$$ \begin{aligned} & \varGamma_{i} \left( {r^{ * } } \right) = \frac{1}{{r^{ * 3} }}\left( {r^{ * } \left( { - J_{5} - J_{6} p^{2} + J_{2} r^{ * 2} - \left( {J_{7} + J_{4} p^{2} + J_{7} p^{2} - J_{1} r^{ * 2} } \right)a_{i} } \right)w_{i1}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right)} \right. \\ & \quad + \left. {r^{ * 2} \left( {J_{5} + J_{7} a_{i} } \right)\left( {w_{i1}^{{{\prime \prime }}} \left( {p,\chi_{i} r^{ * } } \right) + r^{ * } w_{i1}^{{{\prime \prime \prime }}} \left( {p,\chi_{i} r^{ * } } \right)} \right) - p^{2} \left( {J_{8} + \left( {J_{3} - J_{7} } \right)a_{i} } \right)w_{i1} \left( {p,\chi_{i} r^{ * } } \right)} \right) \\ \end{aligned}. $$
(92)
$$ \varGamma_{4} \left( {r^{ * } } \right) = - \frac{{p\left( {\left( {J_{3} + J_{7} } \right)r^{ * } w_{41}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right) + \left( {J_{4} p^{2} - J_{1} r^{ * 2} } \right)w_{41} \left( {p,\chi_{i} r^{ * } } \right)} \right)}}{{r^{ * 3} }} $$
(93)
$$ \begin{aligned} \varGamma \varGamma_{i} \left( {r^{ * } } \right) = \frac{1}{{r^{ * 3} }}\left( {r^{ * } \left( { - J_{5} - J_{6} p^{2} + J_{2} r^{ * 2} - \left( {J_{7} + J_{4} p^{2} + J_{7} p^{2} - J_{1} r^{ * 2} } \right)a_{i} } \right)w_{i2}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right)} \right. \hfill \\ + \left. {r^{ * 2} \left( {J_{5} + J_{7} a_{i} } \right)\left( {w_{i2}^{{{\prime \prime }}} \left( {p,\chi_{i} r^{ * } } \right) + r^{ * } w_{i2}^{{{\prime \prime \prime }}} \left( {p,\chi_{i} r^{ * } } \right)} \right) - p^{2} \left( {J_{8} + \left( {J_{3} - J_{7} } \right)a_{i} } \right)w_{i2} \left( {p,\chi_{i} r^{ * } } \right)} \right) \hfill \\ \end{aligned} $$
(94)
$$ \varGamma \varGamma_{4} \left( {r^{ * } } \right) = - \frac{{p\left( {\left( {J_{3} + J_{7} } \right)r^{ * } w_{42}^{{\prime }} \left( {p,\chi_{i} r^{ * } } \right) + \left( {J_{4} p^{2} - J_{1} r^{ * 2} } \right)w_{42} \left( {p,\chi_{i} r^{ * } } \right)} \right)}}{{r^{ * 3} }} $$
(95)

For each case, an exact solution can be obtained by setting the determinant of the matrices in Table 11 equal to zero. Roots of the determinant are the natural frequencies of annular sector plates with specific boundary conditions at inner and outer edges of annular sector plates for a given wave number.

Table 11 Exact closed-form characteristic equations for annular sector plates with different combination of boundary conditions in matrix forms

Appendix 2

The closed-form exact solutions to the characteristic equations of circular sector plates under hard simply supported at the radial edge and free, soft simply supported, hard simply supported and clamped boundary conditions at the radial edge are presented for two cases.

Case 1: P ≥ 1

After expanding the determinant and performing mathematical manipulations, exact characteristic equations can be listed below for each individual case.

Case 1–1: Clamped circular sector plates

$$ \begin{aligned} & - x_{1} \left( {L_{3} \left( 1 \right)w_{21} \left( 1 \right) - L_{2} \left( 1 \right)w_{31} \left( 1 \right)} \right)\left( {L_{1} \left( 1 \right)L_{4} \left( 1 \right) - p^{2} w_{11} \left( 1 \right)w_{41} \left( 1 \right)} \right) \\ & + x_{2} \left( {L_{3} \left( 1 \right)w_{11} \left( 1 \right) - L_{1} \left( 1 \right)w_{31} \left( 1 \right)} \right)\left( {L_{2} \left( 1 \right)L_{4} \left( 1 \right) - p^{2} w_{21} \left( 1 \right)w_{41} \left( 1 \right)} \right) \\ & - x_{3} \left( {L_{2} \left( 1 \right)w_{11} \left( 1 \right) - L_{1} \left( 1 \right)w_{21} \left( 1 \right)} \right)\left( {L_{3} \left( 1 \right)L_{4} \left( 1 \right) - p^{2} w_{31} \left( 1 \right)w_{41} \left( 1 \right)} \right) = 0 \\ \end{aligned} $$
(96)

where

$$ w_{i1} \left( {r^{ * } } \right) = w_{i1} \left( {p,\chi_{i} r^{ * } } \right),\,\,\,\,\,\,\,\,\,\,L_{i} \left( {r^{ * } } \right) = \frac{\partial }{{\partial r^{ * } }}w_{i1} \left( {p,\chi_{i} r^{ * } } \right),\,\,\,\,\,i = 1,2,3,4 $$
(97)

Case 1–2: Hard simply supported circular sector plates

$$ \begin{aligned} & L_{4} \left( 1 \right)\left( {\left( { - \bar{\alpha }_{3} \varLambda_{2} + \bar{\alpha }_{2} \varLambda_{3} } \right)w_{11} \left( 1 \right) + \left( {\bar{\alpha }_{3} \varLambda_{1} - \bar{\alpha }_{1} \varLambda_{3} } \right)w_{21} \left( 1 \right) + \left( { - \bar{\alpha }_{2} \varLambda_{1} + \bar{\alpha }_{1} \varLambda_{2} } \right)w_{31} \left( 1 \right)} \right) \\ & \quad + p\left( {\left( {x_{2} - x_{3} } \right)\left( {\bar{\alpha }_{4} \varLambda_{1} - \bar{\alpha }_{1} \varLambda_{4} } \right)w_{21} \left( 1 \right)w_{31} \left( 1 \right)} \right. \\ & \quad + \left. {w_{11} \left( 1 \right)\left( {\left( {x_{1} - x_{2} } \right)\left( {\bar{\alpha }_{4} \varLambda_{3} - \bar{\alpha }_{3} \varLambda_{4} } \right)w_{21} \left( 1 \right) - \left( {x_{1} - x_{3} } \right)\left( {\bar{\alpha }_{4} \varLambda_{2} - \bar{\alpha }_{2} \varLambda_{4} } \right)w_{31} \left( 1 \right)} \right)} \right) = 0 \\ \end{aligned} $$
(98)

where

$$ \bar{\alpha }_{i} = - \frac{1}{3}\left( {4G + \left( { - 3F + 4G} \right)x_{i} } \right)\left( {q_{i} \left( 1 \right) + \nu \left( {L_{i} \left( 1 \right) - p^{2} w_{i1} \left( 1 \right)} \right)} \right),\,\,\,i = 1,2,3 $$
(99)
$$ \bar{\alpha }_{4} = - \frac{1}{3}\left( {3F - 4G} \right)p\left( {\nu - 1} \right)\left( {L_{4} \left( 1 \right) - w_{41} \left( 1 \right)} \right) $$
(100)
$$ \varLambda_{i} = - \frac{1}{3}\left( {4F + \left( { - 3C + 4F} \right)x_{i} } \right)\left( {q_{i} \left( 1 \right) + \nu \left( {L_{i} \left( 1 \right) - p^{2} w_{i1} \left( 1 \right)} \right)} \right),\,\,\,i = 1,2,3 $$
(101)
$$ \varLambda_{4} = - \frac{1}{3}\left( {3C - 4F} \right)p\left( {\nu - 1} \right)\left( {L_{4} \left( 1 \right) - w_{41} \left( 1 \right)} \right) $$
(102)
$$ q_{i} \left( {r^{ * } } \right) = \frac{\partial }{{\partial r^{ * } }}L_{i} \left( {r^{ * } } \right),\,\,\,\,\,\,i = 1,2,3,4 $$
(103)

Case 1–3: Soft simply supported circular sector plates

$$ \begin{aligned} & - \left( {\varLambda_{4} \varPsi_{3} + \varLambda_{3} \varPsi_{4} } \right)\left( {\bar{\alpha }_{2} w_{11} \left( 1 \right) - \bar{\alpha }_{1} w_{21} \left( 1 \right)} \right) \\ & \quad + \bar{\alpha }_{3} \left( {\left( {\varLambda_{4} \varPsi_{2} + \varLambda_{2} \varPsi_{4} } \right)w_{11} \left( 1 \right) - \left( {\varLambda_{4} \varPsi_{1} + \varLambda_{1} \varPsi_{4} } \right)w_{21} \left( 1 \right)} \right) \\ & \quad + \left( {\bar{\alpha }_{2} \left( {\varLambda_{4} \varPsi_{1} + \varLambda_{1} \varPsi_{4} } \right) - \bar{\alpha }_{1} \left( {\varLambda_{4} \varPsi_{2} + \varLambda_{2} \varPsi_{4} } \right)} \right)w_{31} \left( 1 \right) \\ & \quad + \bar{\alpha }_{4} \left( {\varPsi_{3} \left( {\varLambda_{2} w_{11} \left( 1 \right) - \varLambda_{1} w_{21} \left( 1 \right)} \right) + \varLambda_{3} \left( { - \varPsi_{2} w_{11} \left( 1 \right) + \varPsi_{1} w_{21} \left( 1 \right)} \right) + \left( { - \varLambda_{2} \varPsi_{1} + \varLambda_{1} \varPsi_{2} } \right)w_{31} \left( 1 \right)} \right) = 0 \\ \end{aligned} $$
(104)

where

$$ \varPsi_{i} = \frac{2}{9}p\left( { - 12F + 16G + \left( {9C - 24F + 16G} \right)x_{i} } \right)\left( {L_{i} \left( 1 \right) - w_{i1} \left( 1 \right)} \right),\,\,\,\,\,i = 1,2,3 $$
(105)
$$ \varPsi_{4} = \left( {C - \frac{8}{3}F + \frac{16}{9}G} \right)\left( {L_{4} \left( 1 \right) - q_{4} \left( 1 \right) - p^{2} w_{41} \left( 1 \right)} \right) $$
(106)

Case 1–4: Free circular sector plates

$$ \begin{aligned} & \bar{\alpha }_{4} \left( {\varLambda_{3} \left( {\varUpsilon_{2} \varPsi_{1} - \varUpsilon_{1} \varPsi_{2} } \right) + \varLambda_{2} \left( { - \varUpsilon_{3} \varPsi_{1} + \varUpsilon_{1} \varPsi_{3} } \right) + \varLambda_{1} \left( {\varUpsilon_{3} \varPsi_{2} - \varUpsilon_{2} \varPsi_{3} } \right)} \right) \\ & \quad + \bar{\alpha }_{3} \left( {\varLambda_{4} \left( { - \varUpsilon_{2} \varPsi_{1} + \varUpsilon_{1} \varPsi_{2} } \right) + \varLambda_{2} \left( {\varUpsilon_{4} \varPsi_{1} + \varUpsilon_{1} \varPsi_{4} } \right) - \varLambda_{1} \left( {\varUpsilon_{4} \varPsi_{2} + \varUpsilon_{2} \varPsi_{4} } \right)} \right) \\ & \quad + \bar{\alpha }_{2} \left( {\varLambda_{4} \left( {\varUpsilon_{3} \varPsi_{1} - \varUpsilon_{1} \varPsi_{3} } \right) - \varLambda_{3} \left( {\varUpsilon_{4} \varPsi_{1} + \varUpsilon_{1} \varPsi_{4} } \right) + \varLambda_{1} \left( {\varUpsilon_{4} \varPsi_{3} + \varUpsilon_{3} \varPsi_{4} } \right)} \right) \\ & \quad + \bar{\alpha }_{1} \left( {\varLambda_{4} \left( { - \varUpsilon_{3} \varPsi_{2} + \varUpsilon_{2} \varPsi_{3} } \right) + \varLambda_{3} \left( {\varUpsilon_{4} \varPsi_{2} + \varUpsilon_{2} \varPsi_{4} } \right) - \varLambda_{2} \left( {\varUpsilon_{4} \varPsi_{3} + \varUpsilon_{3} \varPsi_{4} } \right)} \right) = 0 \\ \end{aligned} $$
(107)

where

$$ \begin{aligned} & \varUpsilon_{i} = p^{2} \left( {J_{7} a_{i} - J_{3} a_{i} - J_{8} } \right)w_{i1} \left( 1 \right) + \left( {J_{1} a_{i} + J_{2} - J_{7} a_{i} p^{2} - J_{7} a_{i} - J_{4} a_{i} p^{2} - J_{6} p^{2} - J_{5} } \right)L_{i} \left( 1 \right) \\ & \quad + \left( {J_{7} a_{i} + J_{5} } \right)\left( {q_{i} \left( 1 \right) + s_{i} \left( 1 \right)} \right),\quad i = 1,2,3 \\ \end{aligned} $$
(108)
$$ \varUpsilon_{4} = p\left( {J_{1} - p^{2} J_{4} } \right)w_{41} \left( 1 \right) - p\left( {J_{7} + J_{3} } \right)L_{4} \left( 1 \right) $$
(109)
$$ s_{i} \left( {r^{ * } } \right) = \frac{\partial }{{\partial r^{ * } }}q_{i} \left( {r^{ * } } \right) $$
(110)

Case 2: 0 < p < 1

In this case, obtaining frequency parameter needs to determine the determinant of a 8 × 8 matrix. The first four rows of the 8 × 8 matrix are replaced by A, B, C or D sub matrices in Appendix 1, depending on boundary condition, and the last four rows is E sub matrix as follows

Subcase 1.x 1 > 0, x 2 < 0, x 3 > 0, x 4 > 0

$$ E = \left| {\begin{array}{*{20}c} 0 & {\varOmega_{12} } & 0 & {\varOmega_{14} } & 0 & {\varOmega_{16} } & 0 & 0 \\ 0 & {\varOmega_{22} } & 0 & {\varOmega_{24} } & 0 & {\varOmega_{26} } & 0 & {\varOmega_{28} } \\ {\varOmega_{31} } & {\varOmega_{32} } & {\varOmega_{33} } & {\varOmega_{34} } & {\varOmega_{35} } & {\varOmega_{36} } & {\varOmega_{37} } & {\varOmega_{38} } \\ {\varOmega_{41} } & {\varOmega_{42} } & {\varOmega_{43} } & {\varOmega_{44} } & {\varOmega_{45} } & {\varOmega_{46} } & 0 & 0 \\ \end{array} } \right| $$
(111)

where

$$ \begin{aligned} & \varOmega_{12} = \frac{\pi }{2}\chi_{1}^{ - p} ,\,\,\,\,\,\varOmega_{14} = - \chi_{2}^{ - p} ,\,\,\,\,\,\varOmega_{16} = \frac{\pi }{2}\chi_{3}^{ - p} \\ & \varOmega_{22} = - a_{1} \frac{\pi }{2}\chi_{1}^{ - p} ,\,\,\,\,\,\varOmega_{24} = a_{2} \chi_{2}^{ - p} ,\,\,\,\,\,\varOmega_{26} = - a_{3} \frac{\pi }{2}\chi_{3}^{ - p} ,\,\,\,\,\,\varOmega_{28} = - \frac{\pi }{2}\chi_{4}^{ - p} \\ & \varOmega_{31} = a_{1} \chi_{1}^{p} ,\,\,\,\,\,\varOmega_{32} = \frac{{ - \pi a_{1} \chi_{1}^{p} }}{{2\sin \left( {\pi p} \right)}},\,\,\,\,\,\varOmega_{33} = a_{2} \chi_{2}^{p} ,\,\,\,\,\,\varOmega_{34} = a_{2} \chi_{2}^{p} \cot \left( {\pi p} \right), \\ & \varOmega_{35} = a_{3} \chi_{3}^{p} ,\,\,\,\,\,\varOmega_{36} = \frac{{ - \pi a_{3} \chi_{3}^{p} }}{{2\sin \left( {\pi p} \right)}},\,\,\,\,\,\varOmega_{37} = - \chi_{4}^{p} ,\,\,\,\,\,\varOmega_{38} = \frac{{\pi \chi_{4}^{p} }}{{2\sin \left( {\pi p} \right)}} \\ & \varOmega_{41} = \chi_{1}^{p} ,\,\,\,\,\,\varOmega_{42} = \frac{{ - \pi \chi_{1}^{p} }}{{2\sin \left( {\pi p} \right)}},\,\,\,\,\,\varOmega_{43} = \chi_{2}^{p} ,\,\,\,\,\,\varOmega_{44} = \chi_{2}^{p} \cot \left( {\pi p} \right), \\ & \varOmega_{45} = \chi_{3}^{p} ,\,\,\,\,\,\varOmega_{46} = \frac{{ - \pi \chi_{3}^{p} }}{{2\sin \left( {\pi p} \right)}} \\ \end{aligned} $$
(112)

Subcase 2.x 1 > 0, x 1 < 0, x 3 < 0, x 4 < 0

$$ E = \left| {\begin{array}{*{20}c} 0 & {\varPi_{12} } & 0 & {\varPi_{14} } & 0 & {\varPi_{16} } & 0 & 0 \\ 0 & {\varPi_{22} } & 0 & {\varPi_{24} } & 0 & {\varPi_{26} } & 0 & {\varPi_{28} } \\ {\varPi_{31} } & {\varPi_{32} } & {\varPi_{33} } & {\varPi_{34} } & {\varPi_{35} } & {\varPi_{36} } & {\varPi_{37} } & {\varPi_{38} } \\ {\varPi_{41} } & {\varPi_{42} } & {\varPi_{43} } & {\varPi_{44} } & {\varPi_{45} } & {\varPi_{46} } & 0 & 0 \\ \end{array} } \right| $$
(113)

where

$$ \begin{aligned} & \varPi_{12} = \frac{\pi }{2}\chi_{1}^{ - p} ,\,\,\,\,\,\varPi_{14} = - \chi_{2}^{ - p} ,\,\,\,\,\,\varPi_{16} = - \chi_{3}^{ - p} \\ & \varPi_{22} = - a_{1} \frac{\pi }{2}\chi_{1}^{ - p} ,\,\,\,\,\,\varPi_{24} = a_{2} \chi_{2}^{ - p} ,\,\,\,\,\,\varPi_{26} = a_{3} \chi_{3}^{ - p} ,\,\,\,\,\,\varPi_{28} = \chi_{4}^{ - p} \\ & \varPi_{31} = a_{1} \chi_{1}^{p} ,\,\,\,\,\,\varPi_{32} = \frac{{ - \pi a_{1} \chi_{1}^{p} }}{{2\sin \left( {\pi p} \right)}},\,\,\,\,\,\varPi_{33} = a_{2} \chi_{2}^{p} ,\,\,\,\,\,\varPi_{34} = a_{2} \chi_{2}^{p} \cot \left( {\pi p} \right), \\ & \varPi_{35} = a_{3} \chi_{3}^{p} ,\,\,\,\,\,\varPi_{36} = a_{3} \chi_{3}^{p} \cot \left( {\pi p} \right),\,\,\,\,\,\varPi_{37} = - \chi_{4}^{p} ,\,\,\,\,\,\varPi_{38} = - \cot \left( {\pi p} \right)\chi_{4}^{p} \\ & \varPi_{41} = \chi_{1}^{p} ,\,\,\,\,\,\varPi_{42} = \frac{{ - \pi \chi_{1}^{p} }}{{2\sin \left( {\pi p} \right)}},\,\,\,\,\,\varPi_{43} = \chi_{2}^{p} ,\,\,\,\,\,\varPi_{44} = \chi_{2}^{p} \cot \left( {\pi p} \right), \\ & \varPi_{45} = \chi_{3}^{p} ,\,\,\,\,\,\varPi_{46} = \chi_{3}^{p} \cot \left( {\pi p} \right) \\ \end{aligned} $$
(114)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadaee, M. RETRACTED ARTICLE: A novel approach for free vibration of circular/annular sector plates using Reddy’s third order shear deformation theory. Meccanica 50, 2325–2351 (2015). https://doi.org/10.1007/s11012-015-0158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0158-4

Keywords

Navigation