Skip to main content
Log in

Effect of magnetic field on Ni nanoclusters prepared via a combined plasma-enhanced chemical vapor deposition and radio frequency sputtering

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Nickel nanoparticles were prepared by a co-deposition technique via radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) and radio frequency (RF) sputtering methods using a Ni target and acetylene gas. To prevent the prepared nanoparticles from agglomeration and in order for the nucleus of the nanocluster to be formed, a DLC film was made as host. We fixed the RF power at 300W and the deposition time at 30min. We prepared four different nickel samples by varying the initial pressure of acetylene gas in the chamber. It is shown as the amount of nickel increases, the electrical resistance decreases where the structure is transformed from a nanoparticle form to a nanocluster form. The nanoclusters have a cone structure, because the initial nanoparticles serve as nuclei for nanoclusters, and deposition is carried out vertically. By applying a magnetic field, it was found that the cluster structure gives a better response to it. The absorbance value at 800nm was improved from 0.5% for the pure nanoparticle sample (#1) to 6.4% for the nanocluster structure (#4). As a result, the nanocluster structure is more suitable for magnetic sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Feldheim, A.F. Colby Jr. (Editors), Metal Nanoparticles: Synthesis Characterization and Application (Marcel Dekker, 2002)

  2. S. Ţalu et al., Ind. Eng. Chem. Res. 54, 8212 (2015)

    Article  Google Scholar 

  3. M. Kidwai, Nanoparticles in Green Catalysis: Handbook of Green Chemistry (Wiley, 2010)

  4. L.L. Beecroft, C.K. Ober, Chem. Mater. 9, 1302 (1997)

    Article  Google Scholar 

  5. A. Meldrum, L.A. Boatner, C.W. White, Nucl. Instrum. Methods Phys. Res. B 178, 7 (2001)

    Article  ADS  Google Scholar 

  6. G. Schmid, D. Fenske, Phil. Trans. R. Soc. A 368, 1207 (2010)

    Article  ADS  Google Scholar 

  7. Y. Chen, D.L. Peng, D. Lin, X. Luo, Nanotechnology 18, 505703 (2007)

    Article  ADS  Google Scholar 

  8. W. Szu-Han, C. Dong-Hwang, J. Colloid Interface Sci. 259, 282 (2003)

    Article  ADS  Google Scholar 

  9. Wang Sh-Fu et al., Sensors Actuators B 123, 495 (2007)

    Article  Google Scholar 

  10. J. Robertson, Phys. Status Solidi A 205, 2233 (2008)

    Article  ADS  Google Scholar 

  11. T. Ghodselahi et al., Surf. Coat. Technol. 202, 2731 (2008)

    Article  Google Scholar 

  12. M. Kataja, T.K. Hakala, A. Julku, M.J. Huttunen, Nat. Commun. 6, 7072 (2015)

    Article  Google Scholar 

  13. J. Robertson, Mater. Sci. Eng. R: Rep. 37, 129 (2002)

    Article  Google Scholar 

  14. M. Ohring, The Materials Science of Thin Films (AcademicPress, Inc, 1992)

  15. M. Spolaore, V. Antoni, M. Bagatin, A. Buffa, Surf. Coat. Technol. 116, 1083 (1999)

    Article  Google Scholar 

  16. R.E.H. Clark, D.H. Reiter (Editors), Nuclear Fusion Research (Springer, 2005)

  17. Y. Kudriavtsev et al., Appl. Surf. Sci. 239, 273 (2005)

    Article  ADS  Google Scholar 

  18. A.C. Ferrari, J. Robertson, Phys. Rev. B 63, 121405(R) (2001)

    Article  ADS  Google Scholar 

  19. J.A. Creighton, D.J. Eadon, J. Chem. Soc. Faraday Trans. 87, p3881 (1991)

    Article  Google Scholar 

  20. N.F. Mott, E.A. Davis, Electronic Process in Non-crystalline Materials (Clarendon Press, 1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Yazdani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadirad, M., Yazdani, A. & Rahimi, K. Effect of magnetic field on Ni nanoclusters prepared via a combined plasma-enhanced chemical vapor deposition and radio frequency sputtering. Eur. Phys. J. Plus 133, 216 (2018). https://doi.org/10.1140/epjp/i2018-12031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12031-1

Navigation