Skip to main content
Log in

Self-Focusing and de-Focusing of Intense Left- and Right-Hand Polarized Laser Pulse in Hot Magnetized Plasma in the Presence of an External Non-Uniform Magnetized Field

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, self-focusing of an intense circularly polarized laser beam in the presence of a non-uniform positive guide magnetic field with slope constant parameter δ in hot magnetized plasma, using Maxwell’s equations and relativistic fluid momentum equation is investigated. An envelope equation governing the spot-size of laser beam for both of left- and right-hand polarizations has been derived, and the effects of the plasma temperature and magnetic field on the electron density distribution of hot plasma with respect to variation of normalized laser spot-size has been studied. Numerical results show that self-focusing is better increased in the presence of an external non-uniform magnetic field. Moreover, in plasma density profile, self-focusing of the laser pulse improves in comparison with no non-uniform magnetic field. Also, with increasing slope of constant parameter of the non-uniform magnetic field, the self-focusing increases, and subsequently, the spot-size of laser pulse propagated through the hot magnetized plasma decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Tajima, J. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  2. J. Fontana, R. Pantell, A high‐energy, laser accelerator for electrons using the inverse Cherenkov effect. J. Appl. Phys. 54, 4285–4288 (1983)

    Article  ADS  Google Scholar 

  3. P. Sprangle, E. Esarey, A. Ting, G. Joyce, Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 2146–2148 (1988)

    Article  ADS  Google Scholar 

  4. M. Roth, T. Cowan, M. Key, S. Hatchett, C. Brown, W. Fountain, et al., Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436 (2001)

    Article  ADS  Google Scholar 

  5. P. Shukla, Generation of wakefields by elliptically polarized laser pulses in a magnetized plasma. Physics of Plasmas (1994-present) vol. 6, 1363–1365 (1999)

    Article  ADS  Google Scholar 

  6. P. Amendt, D.C. Eder, S.C. Wilks, X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 2589 (1991)

    Article  ADS  Google Scholar 

  7. A. Singh, N. Gupta, Second harmonic generation by relativistic self-focusing of q-Gaussian laser beam in preformed parabolic plasma channel. Physics of Plasmas 22, 013102 (2015)

    Article  ADS  Google Scholar 

  8. N. Burnett, P.B. Corkum, Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization. JOSA B 6, 1195–1199 (1989)

    Article  ADS  Google Scholar 

  9. D. Eder, P. Amendt, L. DaSilva, R. London, B. MacGowan, D. Matthews, et al., Tabletop x‐ray lasers*. Physics of Plasmas (1994-present) 1, 1744–1752 (1994)

    Article  ADS  Google Scholar 

  10. B. Lemoff, G. Yin, C. Gordon, C. Barty, S. Harris, Femtosecond-pulse-driven 10-Hz 41.8-nm laser in Xe IX. JOSA B 13, 180–184 (1996)

    Article  ADS  Google Scholar 

  11. M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, et al., Ignition and high gain with ultrapowerful lasers*. Physics of Plasmas (1994-present) 1, 1626–1634 (1994)

    Article  ADS  Google Scholar 

  12. C. Deutsch, H. Furukawa, K. Mima, M. Murakami, K. Nishihara, Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483 (1996)

    Article  ADS  Google Scholar 

  13. S. Regan, D. Bradley, A. Chirokikh, R. Craxton, D. Meyerhofer, W. Seka, et al., Laser-plasma interactions in long-scale-length plasmas under direct-drive national ignition facility conditions. Physics of Plasmas (1994-present) 6, 2072–2080 (1999)

    Article  ADS  Google Scholar 

  14. E. Esarey, P. Sprangle, J. Krall, A. Ting, Overview of plasma-based accelerator concepts. Plasma Science IEEE Transactions on 24, 252–288 (1996)

    Article  ADS  Google Scholar 

  15. W. L. Kruer, The Physics of Laser Plasma Interactions, 1988.

    Google Scholar 

  16. W. Mori, The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers. Quantum Electronics IEEE Journal of 33, 1942–1953 (1997)

    Article  ADS  Google Scholar 

  17. C.E. Max, J. Arons, A.B. Langdon, Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209 (1974)

    Article  ADS  Google Scholar 

  18. C. McKinstrie, R. Bingham, Stimulated Raman forward scattering and the relativistic modulational instability of light waves in rarefied plasma. Physics of Fluids B: Plasma Physics (1989–1993) 4, 2626–2633 (1992)

    Article  ADS  Google Scholar 

  19. T.B. Benjamin, J. Feir, The disintegration of wave trains on deep water part 1. Theory. J. Fluid Mech. 27, 417–430 (1967)

    Article  ADS  MATH  Google Scholar 

  20. R. W. Boyd, Nonlinear optics: Academic press, 2003.

  21. S. Patil and M. Takale, Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: Effect of light absorption, in INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics, 2016, p. 020129.

  22. N. Saedjalil, S. Jafari, Self-focusing and self-compression of a laser pulse in the presence of an external tapered magnetized density-ramp plasma. High Energy Density Physics 19, 48–57 (2016)

    Article  ADS  Google Scholar 

  23. E. Eslami, A.E. Nami, Characteristics of self-focusing of a Gaussian laser pulse under lateral and axial plasma density variations. IEEE Transactions on Plasma Science 44, 226–231 (2016)

    Article  ADS  Google Scholar 

  24. P. Monot, T. Auguste, P. Gibbon, F. Jakober, G. Mainfray, A. Dulieu, et al., Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 2953 (1995)

    Article  ADS  Google Scholar 

  25. K. Krushelnick, A. Ting, C. Moore, H. Burris, E. Esarey, P. Sprangle, et al., Plasma channel formation and guiding during high intensity short pulse laser plasma experiments. Phys. Rev. Lett. 78, 4047 (1997)

    Article  ADS  Google Scholar 

  26. V. Nanda, N. Kant, M.A. Wani, Sensitiveness of decentered parameter for relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma. IEEE Transactions on Plasma Science 41, 2251–2256 (2013)

    Article  ADS  Google Scholar 

  27. N. Kant, M.A. Wani, A. Kumar, Self-focusing of Hermite–Gaussian laser beams in plasma under plasma density ramp. Opt. Commun. 285, 4483–4487 (2012)

    Article  ADS  Google Scholar 

  28. F. Perkins, E. Valeo, Thermal self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 32, 1234 (1974)

    Article  ADS  Google Scholar 

  29. D.N. Gupta, H. Suk, Enhanced thermal self-focusing of a Gaussian laser beam in a collisionless plasma. Physics of Plasmas 18, 124501 (2011)

    Article  ADS  Google Scholar 

  30. S. Patil, M. Takale, V. Fulari, D. Gupta, H. Suk, Combined effect of ponderomotive and relativistic self-focusing on laser beam propagation in a plasma. Applied Physics B 111, 1–6 (2013)

    Article  Google Scholar 

  31. M. A. Wani and N. Kant, Self-focusing of Hermite-Cosh-Gaussian laser beams in plasma under density transition, Advances in Optics 2014, 2014.

  32. A. Khachatrian, A. Sukhorukov, Some aspects of thermal self-focusing. Opto-Electronics 3, 49–55 (1971)

    Article  Google Scholar 

  33. K. Walia, A. Singh, Comparison of two theories for the relativistic self focusing of laser beams in plasma. Contributions to Plasma Physics 51, 375–381 (2011)

    Article  ADS  Google Scholar 

  34. E. Esarey, P. Sprangle, J. Krall, A. Ting, Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 33, 1879–1914 (1997)

    Article  ADS  Google Scholar 

  35. A. Borisov, A. Borovskii, V. Korobkin, A. Prokhorov, C. Rhodes, O. Shiryaev, et al., Relativistic-ponderomotive self-channeling of intense ultrashort laser pulses in a medium, Soviet physics. JETP 74, 604–615 (1992)

    Google Scholar 

  36. N. Kant, S. Saralch, H. Singh, Ponderomotive self-focusing of a short laser pulse under a plasma density ramp. Nukleonika 56, 149–153 (2011)

    Google Scholar 

  37. Y. Wang, Z. Zhou, Propagation characters of Gaussian laser beams in collisionless plasma: effect of plasma temperature. Physics of Plasmas (1994-present) 18, 043101 (2011)

    Article  ADS  Google Scholar 

  38. H. Mehdian, S. Jafari, A. Hasanbeigi, Steady-state electron trajectories and growth rate in electromagnetically pumped free-electron laser with specific nonuniform magnetic field. Physics of Plasmas (1994-present) 15, 073102 (2008)

    Article  ADS  Google Scholar 

  39. N.N. Rao, P. Shukla, M. Yu, Strong electromagnetic pulses in magnetized plasmas. Physics of Fluids (1958–1988) 27, 2664–2668 (1984)

    Article  ADS  MATH  Google Scholar 

  40. M. Abedi-Varaki, S. Jafari, Self-focusing and de-focusing of intense left and right-hand polarized laser pulse in hot magnetized plasma: laser out-put power and laser spot-size. Optik-International Journal for Light and Electron Optics. 142, 360–369 (2017)

  41. P. Shukla, R. Bharuthram, N. Tsintsadze, Fully relativistic filamentation instability of strong electromagnetic radiation in unmagnetized plasmas. Phys. Scr. 38, 578 (1988)

    Article  ADS  Google Scholar 

  42. N.A. Krall, A.W. Trivelpiece, R.A. Gross, Principles of plasma physics. Am. J. Phys. 41, 1380–1381 (1973)

    Article  ADS  Google Scholar 

  43. P. Jha, R.K. Mishra, A.K. Upadhyay, G. Raj, Spot-size evolution of laser beam propagating in plasma embedded in axial magnetic field. Physics of Plasmas 14, 114504 (2007)

    Article  ADS  Google Scholar 

  44. M. Ghorbanalilu, Axially magnetized electron–positron and electron plasma competition on the self focusing of intense laser beam. Opt. Commun. 285, 669–672 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Abedi-Varaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi-Varaki, M., Jafari, S. Self-Focusing and de-Focusing of Intense Left- and Right-Hand Polarized Laser Pulse in Hot Magnetized Plasma in the Presence of an External Non-Uniform Magnetized Field. Braz J Phys 47, 473–480 (2017). https://doi.org/10.1007/s13538-017-0512-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-017-0512-1

Keywords

Navigation