Skip to main content
Log in

Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 12 March 2019

This article has been updated

Abstract

A theoretical study is conducted for magnetohydrodynamic pumping of electroosmotic non-Newtonian physiological nanoliquids through a two-dimensional microfluidic channel. The Sutterby rheological nanofluid model is utilized to characterize the liquid. The normalized two-dimensional conservation equations for mass, longitudinal and transverse momentum, energy and solutal concentration are reduced with lubrication approximations (long wavelength and low Reynolds number assumptions). A coordinate transformation is employed to map the unsteady problem from the wave laboratory frame to a steady problem in the wave frame. Slip and convective conditions are imposed at the channel walls. The emerging boundary value problem is solved numerically using MATLAB software. The flow is effectively controlled by many geometric parameters, viz., electroosmosis, Hartmann and Sutterby fluid parameters. It is observed from the analysis that the rise in magnetic and electroosmosis effects leads to a reduction in the axial velocity field. The radiation parameter decreases the temperature for the positive value of Joule heating parameter and the trend is revered for the negative Joule heating parameter. This study is encouraged by exploring the nanofluid dynamics in peristaltic transport as symbolized by heat transport in biological flows, novel pharmacodynamics pumps and gastrointestinal motility enhancement. The study is also relevant to MHD biomimetic blood pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Change history

  • 12 March 2019

    The original article was published with typographical errors in the non-dimensionalization and parameters involved in the equations.

Abbreviations

\(A_{1}\) :

Deformation tensor

\(a\) :

Half-width of the channel

\(B_{0}\) :

Uniform transverse magnetic field

\(\bar{B}\) :

External imposed magnetic field

\(b\) :

Wave amplitude of the channel

\(B,\,m\) :

Material constants

\(Bh\) :

Thermal Biot number

\(Bm\) :

Concentration Biot number

\(c\) :

Speed of the wave

\(C\) :

Nanoparticle concentration

\(D\) :

Diffusivity of the chemical species

\(D_{\text{s}}\) :

Solutal diffusivity of the electrolyte

\(D_{\text{ct}}\) :

Soret diffusivity

\(Da\) :

Darcy number

\(D_{\text{tc}}\) :

Dufour diffusivity

\(e\) :

Electronic charge

\(E_{\text{x}}\) :

Applied electrical field

\(Gr_{\text{t}}\) :

Thermal Grashof number

\(Gr_{\text{c}}\) :

Solutal Grashof number

\(g\) :

Gravitation due to the gravity

\(\bar{J}\) :

Current density

\(k_{\text{f}}\) :

Thermal conductivity

\(k_{\text{c}}\) :

Chemical reaction parameter

\(k^{ * }\) :

Mean absorption coefficient

\(M\) :

Hartmann number

\(N_{\text{tc}}\) :

Dufour thermo-diffusive parameter

\(N_{\text{ct}}\) :

Soret diffuse thermo-parameter

\(P\) :

Pressure in the fixed frame

\(p\) :

Pressure in the wave frame

\(Pe\) :

Ionic Peclet number

\(Pr\) :

Prandtl number

\(Q\) :

Volumetric flow rate in the fixed frame

\(\bar{q}\) :

Velocity vector

\(q\) :

Volumetric flow rate in the wave frame

\(q_{\text{r}}\) :

Radioactive heat flux

\(\bar{R}\) :

Modified Darcy resistance

\(Rn\) :

Radiation parameter

\(S\) :

Joule heating parameter

\(\bar{S}\) :

Extra stress tensor for Sutterby fluid model

\(Sc\) :

Schmidt number

\(T\) :

Temperature

\(t\) :

Time

\(U,V\) :

Velocity components in the fixed frame

\(u,v\) :

Velocity components in the wave frame

\(X,Y\) :

Coordinates of the fixed frame

\(x,y\) :

Coordinates of the wave frame

\(Uhs\) :

Helmholtz–Smoluchowski velocity

\(z\) :

Charge balance

\(\lambda\) :

Wavelength

\(\rho_{\text{f}}\) :

Density of the fluid

\(\beta_{\text{T}}\) :

Thermal expansion coefficient

\(\beta_{\text{C}}\) :

Coefficient of expansion with concentration

\(\rho_{\text{e}}\) :

Electrical charge density

\(\left( {\rho c_{\text{p}} } \right)_{\text{f}}\) :

Heat capacity of the nanofluid

\(\sigma_{\text{e}}\) :

Electrical conductivity

\(\mu_{\text{f}}\) :

Effective viscosity

\(k\) :

Permeability

\(\phi\) :

Porosity of the medium

\(\sigma^{ * }\) :

Stefan–Boltzmann constant

\(\alpha\) :

Velocity slip parameter

\(\kappa_{\text{h}}\) :

Heat transfer coefficient

\(\kappa_{\text{m}}\) :

Mass transfer coefficient

\(\eta_{\text{h}}\) :

Thermal conductivity coefficient

\(\eta_{\text{m}}\) :

Mass diffusivity coefficient

\(\varPsi\) :

Electric potential

\(\varepsilon_{\text{ef}}\) :

Dielectric constant

\(\rho_{\text{e}}\) :

Net charge density of the electrolyte

\(\kappa\) :

Electroosmotic parameter

\(\lambda_{\text{d}}\) :

Characteristic thickness of electrical double layer

\(\beta\) :

Non-dimensional Sutterby nanofluid parameter

\(\varGamma\) :

Dimensionless chemical reaction parameter

\(\alpha\) :

Dimensionless velocity slip parameter

\(\phi\) :

Wave amplitude ratio

References

  1. Reuss FF. Charge-induced flow. Proc Imp Soc Nat Moscow. 1809;3:327–44.

    Google Scholar 

  2. Wiedemann G. First Quantitative study of electrical endosmose. PoggendorfsAnnalen. 1852;87:321–3.

    Google Scholar 

  3. Burgreen D, Nakache FR. Electrokinetic flow in ultrafine capillary slits. J Phys Chem. 1964;68:1084–91.

    Article  Google Scholar 

  4. Yang C, Li D. Analysis of electrokinetic effects on the liquid flow in rectangular micro-channels. Colloids Surf A. 1998;143:339–53.

    Article  CAS  Google Scholar 

  5. Dutta P, Beskok A. Analytical solution of time periodic electroosmotic flows: Analogies to Stokes’ second problem. Anal Chemi. 2001;73(21):5097–102.

    Article  CAS  Google Scholar 

  6. Dutta P, Beskok A, Warburton TC. Numerical simulation of mixed electro-osmotic/pressure driven microflows. Numer Heat Transf Part A Appl. 2002;41:131–48.

    Article  Google Scholar 

  7. Maynes D, Webb BW. Fully developed electro-osmotic heat transfer in micro-channels. Int J Heat Mass Transf. 2003;46:1359–69.

    Article  Google Scholar 

  8. Tang GY, Yang C, Gong HQ, Chai CJ, Lam YC. On electrokinetic mass transport in a micro-channel with Joule heating effects. J Heat Transf. 2005;127:660–3.

    Article  Google Scholar 

  9. Tang G, Yan D, Yang C, Gong H, Chai JC, Lam YC. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Electrophoresis. 2006;27:628–39.

    Article  CAS  Google Scholar 

  10. Horiuchi K, Dutta P, Hossain A. Joule heating effects in mixed electro-osmotic and pressure driven microflows under constant wall heat flux. J Eng Math. 2006;54:159–80.

    Article  CAS  Google Scholar 

  11. Dutta P, Horiuchi K, Yin HM. Thermal characteristics of mixed electro-osmotic and pressure driven flows. Comput Math Appl. 2006;52:651–70.

    Article  Google Scholar 

  12. Moghadam AJ. Exact solution of AC electro-osmotic flow in a microannulus. J Fluids Eng. 2013;135(9):091201.

    Article  Google Scholar 

  13. Masilamani K, Ganguly S, Feichtinger C, Bartuschat D, Rude U. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in micro-channel. Fluid Dyn Res. 2015;47:035505.

    Article  Google Scholar 

  14. Moghadam AJ. Thermal characteristics of time-periodic electroosmotic flow in a circular microchannel. Heat Mass Transf. 2015;51(10):1461–73.

    Article  CAS  Google Scholar 

  15. Khan M, Farooq A, Khan WA, Hussain M. Exact solution of an electroosmotic flow for generalized Burgers fluid in cylindrical domain. Results Phys. 2016;6:933–9.

    Article  Google Scholar 

  16. Keramati H, Sadeghi A, Saidi MH, Chakraborty S. Analytical solutions for thermo-fluidic transport in electroosmotic flow through rough microtubes. Int J Heat Mass Transf. 2016;92:244–51.

    Article  Google Scholar 

  17. Kazemi Z, Rashidi S, Esfahani JA. Effect of flap installation on improving the homogeneity of the mixture in an induced-charge electrokinetic micro-mixer. Chem Eng Process Process Intensif. 2017;121:188–97.

    Article  CAS  Google Scholar 

  18. Rashidi S, Bafekr H, Valipour MS, Esfahani JA. A review on the application, simulation, and experiment of the electrokinetic mixers. Chem Eng Process Process Intensif. 2018;126:108–22.

    Article  CAS  Google Scholar 

  19. Bhushan B. Introduction to nanotechnology. In Springer handbook of nanotechnology. Berlin, Heidelberg: Springer; 2010.

    Book  Google Scholar 

  20. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. ASME J Heat Transf. 1995;66:99–105.

    Google Scholar 

  21. Ganguly S, Sarkar S, Hota TK, Mishra M. Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a micro-channel under the effect of magnetic field. Chem Eng Sci. 2015;126:10–21.

    Article  CAS  Google Scholar 

  22. Sandeep N, Sulochana C. MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles. Ain Shams Eng J. 2016;7:709–16.

    Article  Google Scholar 

  23. Laein RP, Rashidi S, Esfahani JA. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27(2):312–22.

    Article  CAS  Google Scholar 

  24. Shirejini SZ, Rashidi S, Esfahani JA. Recovery of drop in heat transfer rate for a rotating system by nanofluids. J Mol Liq. 2016;220:961–9.

    Article  CAS  Google Scholar 

  25. Rashidi S, Bovand M, Esfahani JA, Ahmadi G. Discrete particle model for convective Al2O3–water nanofluid around a triangular obstacle. Appl Therm Eng. 2016;100:39–54.

    Article  CAS  Google Scholar 

  26. Bovand M, Rashidi S, Ahmadi G, Esfahani JA. Effects of trap and reflect particle boundary conditions on particle transport and convective heat transfer for duct flow—a two-way coupling of Eulerian–Lagrangian model. Appl Therm Eng. 2016;108:368–77.

    Article  CAS  Google Scholar 

  27. Begum N, Siddiqa S, Sulaiman M, Islam S, Hossain MA, Gorla RSR. Numerical solutions for gyrotactic bioconvection of dusty nanofluid along a vertical isothermal surface. Int J Heat Mass Transf. 2017;113:229–36.

    Article  CAS  Google Scholar 

  28. Maskaniyan M, Rashidi S, Esfahani JA. A two-way couple of Eulerian-Lagrangian model for particle transport with different sizes in an obstructed channel. Powder Technol. 2017;312:260–9.

    Article  CAS  Google Scholar 

  29. Prakash J, Sharma A, Tripathi D. Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J Mol Liq. 2018;249:843–55.

    Article  CAS  Google Scholar 

  30. Tripathi D, Sharma A, Beg OA. Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a micro-channel with complex wave propagation. Adv Powder Technol. 2018;29:639–53.

    Article  CAS  Google Scholar 

  31. Prakash J, Ramesh K, Tripathi D, Kumar R. Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels. Microvasc Res. 2018;118:162–72.

    Article  CAS  Google Scholar 

  32. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.

    Article  CAS  Google Scholar 

  33. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct-A numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  34. Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2018;4:2–3. https://doi.org/10.1007/s10973-018-7500-8.

    Article  CAS  Google Scholar 

  35. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018;4:1–3. https://doi.org/10.1007/s10973-018-7070-9.

    Article  CAS  Google Scholar 

  36. Darcy H. Les fontainespubliques de la ville de Dijon. Paris: Dalmont; 1856.

    Google Scholar 

  37. Brinkman HC. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res. 1949;1:27–34.

    Article  Google Scholar 

  38. Mckinley RM, Jahns HO, Harris WW, Greenkorn RA. Non-Newtonian flow in porous media. AIChE J. 1966;12:17–20.

    Article  CAS  Google Scholar 

  39. Eldesokyand IM, Mousa AA. peristaltic flow of a compressible non-Newtonian Maxwellian fluid through porous medium in a tube. Int J Biomath. 2010;3:255–75.

    Article  Google Scholar 

  40. Taamneh Y, Omari R. Slip-flow and heat transfer in a porous microchannel saturated with power-law fluid. J Fluids. 2013. https://doi.org/10.1155/2013/604893.

    Article  Google Scholar 

  41. Tanveer A, Hayat T, Alsaedi A, Ahmad B. On modified Darcy’s law utilization in peristalsis of Sisko fluid. J Mol Liq. 2017;236:290–7.

    Article  CAS  Google Scholar 

  42. Tanveer A, Hayat T, Alsaedi A, Ahmad B. Numerical simulation for peristalsis of Carreau–Yasuda nanofluid in curved channel with mixed convection and porous space. PLoS ONE. 2017;12:e0170029.

    Article  CAS  Google Scholar 

  43. Sutterby JL. Laminar converging flow of dilute polymer solutions in conical sections: part I. Viscosity data, new viscosity model, tube flow solution. AIChE J. 1966;12(1):63–8.

    Article  CAS  Google Scholar 

  44. Akbar NS. Peristaltic flow of a Sutterby nanofluid with double-diffusive natural convection. J Comput Theor Nanosci. 2015;12:1546–52.

    Article  CAS  Google Scholar 

  45. Azhar E, Iqbal Z, Maraj EN. Impact of entropy generation on stagnation-point flow of Sutterby nanofluid: a numerical analysis. Zeitschrift für Naturforschung A. 2016;71(9):837–48.

    Article  CAS  Google Scholar 

  46. Zhonge J, Yi M, Bau HH. Magnetohydrodynamic (MHD) pump fabricated with ceramic tapes. Sens Actuators A. 2002;96:59–66.

    Article  Google Scholar 

  47. Palagi S, Walker D, Qiu T, Fischer P. Micro- and nano-robots in Newtonian and biological viscoelastic fluids. In: Biologically inspired microscale robotic systems, a volume in micro and nano technologies. 2017;133–62.

  48. Ramesh K. Influence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channel. J Mol Liq. 2016;219:256–71.

    Article  CAS  Google Scholar 

  49. Srinivas S, Kothandapani M. Peristaltic transport in an asymmetric channel with heat transfer—a note. Int Commun Heat Mass Transf. 2008;35:514–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewers for their useful suggestions and comments which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, K., Prakash, J. Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. J Therm Anal Calorim 138, 1311–1326 (2019). https://doi.org/10.1007/s10973-018-7939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7939-7

Keywords

Navigation