Skip to main content
Log in

Alternate current conductivity in BSb films prepared by PLD technique: Electron transport processes in low-temperature range (10-275 K)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This study is focused on the measurement of alternate current (a.c.) electrical conductivity of BSb films, deposited on fluorine-doped tin oxide (FTO)-coated glass substrates at 673K by the pulsed laser deposition (PLD) technique. The frequency-dependent a.c. conductivity is measured as a function of temperature (10-275K) and frequency (100Hz-100kHz). The transport processes governing the electrical conduction processes in this material are analyzed critically. It is observed from FESEM micrograph that the film is composed of small discrete grain with sizes varying in the range 6-12nm. It is interesting to notice from \( \ln\sigma_{\rm ac}\) versus 1000/T plot that there are three distinct zones: i) Semiconductor zone at high temperature from 275 to 150K, ii) Insulator zone at low temperature from 70 to 10K and iii) an abrupt change of the \( \ln\sigma_{\rm ac}\) versus 1000/T plot at ∼ 75 indicating MIS transition occurring in this BSb film. We found that the activation energy for the BSb films in the lower-temperature range was quite low ∼ 6 to 41neV, while that in the higher-temperature range was 20 to 50meV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ferhaty, B. Bouhafsz, A. Zaouiz, H. Aourag, J. Phys.: Condens. Matter 10, 7995 (1998)

    ADS  Google Scholar 

  2. A. Zaoui, F.E.H. Hassan, J. Phys.:Condens. Matter. 13, 253 (2001)

    ADS  Google Scholar 

  3. Y. Yao, D. König, M. Green, Sol. Energy Mater. Sol. Cells 111, 123 (2013)

    Article  Google Scholar 

  4. D. König, K. Casalenuovo, Y. Takeda, G. Conibeer, J.F. Guillemoles, R. Patterson, L.M. Huang, M.A. Green, Physica E 42, 2862 (2010)

    Article  ADS  Google Scholar 

  5. S. Das, R. Bhunia, S. Hussain, R. Bhar, B.R. Chakraborty, A.K. Pal, Appl. Surf. Sci. 353, 439 (2015)

    Article  ADS  Google Scholar 

  6. Y. Kumashiro, K. Nakamura, K. Sato, M. Ohtsuka, Y. Ohishi, M. Nakano, Y. Doi, J. Solid State Chem. 177, 533 (2004)

    Article  ADS  Google Scholar 

  7. S. Dalui, S.N. Das, S. Hussain, D. Paramanik, S. Verma, A.K. Pal, J. Cryst. Growth 305, 149 (2007)

    Article  ADS  Google Scholar 

  8. T. Moscicki, Int. J. Opt. 2016, 5438721 (2016)

    Article  Google Scholar 

  9. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

  10. T.B. Schroder, J.C. Dyre, Phys. Rev. Lett. 101, 025901 (2008)

    Article  ADS  Google Scholar 

  11. C. Godet, J.P. Kleider, A.S. Gudovskikh, Diam. Relat. Mater. 16, 1799 (2007)

    Article  ADS  Google Scholar 

  12. J. Han, M. Shen, W. Cao, A. Senos, P.Q. Mantos, Appl. Phys. Lett. 82, 67 (2003)

    Article  ADS  Google Scholar 

  13. A.G. Hunt, Philos. Mag. B 81, 875 (2001)

    Article  ADS  Google Scholar 

  14. S. Abboudy, K. Alfaramawi, L. Abulnasr, Mod. Phys. Lett. B 28, 1450002 (2014)

    Article  ADS  Google Scholar 

  15. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  16. H. Böttger, V.V. Bryksin, Hopping Conduction in Solids (VCH Publishers, Berlin, 1985)

  17. A.L. Efros, Philos. Mag. B 43, 829 (1981)

    Article  ADS  Google Scholar 

  18. A.R. James, C.H. Prakash, G. Prasad, J. Phys. D: Appl. Phys. 39, 1635 (2006)

    Article  ADS  Google Scholar 

  19. A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)

    Article  ADS  Google Scholar 

  20. S.K. Barik, R.N.P. Choudhary, A.K. Singh, Adv. Mater. Lett. 2, 419 (2011)

    Article  Google Scholar 

  21. M. Krichen, M. Megdiche, M. Gargouri, K. Guidara, Indian J. Phys. 88, 1051 (2014)

    Article  ADS  Google Scholar 

  22. T.N. Koltunowicz, P. Zukowski, O. Boiko, A. Saad, J.A. Fedotova, A.K. Fedotov, A.V. Larkin, J. Kasiuk, J. Electron. Mater. 44, 2260 (2015)

    Article  ADS  Google Scholar 

  23. K. Funke, Prog. Solid St. Chem. 22, 111 (1993)

    Article  Google Scholar 

  24. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)

  25. S. Sumi, P.P. Rao, M. Deepa, P. Koshy, J. Appl. Phys. 108, 063718 (2010)

    Article  ADS  Google Scholar 

  26. M. Pollak, Philos. Mag. B 65, 657 (1992)

    Article  ADS  Google Scholar 

  27. A.G. Zabrodskii, A.G. Andreev, S.V. Egorov, Phys. Status Solidi B 205, 61 (1998)

    Article  ADS  Google Scholar 

  28. A.G. Zabrodskii, Philos. Mag. B 81, 1131 (2001)

    Article  ADS  Google Scholar 

  29. A.L. Efros, B.I. Shklovskii, J. Phys. C 8, L49 (1975)

    Article  ADS  Google Scholar 

  30. S.R. Elliott, Philos. Mag. 36, 1291 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Bhunia, R., Hussain, S. et al. Alternate current conductivity in BSb films prepared by PLD technique: Electron transport processes in low-temperature range (10-275 K). Eur. Phys. J. Plus 132, 176 (2017). https://doi.org/10.1140/epjp/i2017-11312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11312-5

Navigation