Skip to main content
Log in

Influence of laser fluence on structural, optical and microwave dielectric properties of pulsed laser deposited Ba0.6Sr0.4TiO3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium strontium titanate Ba0.6Sr0.4TiO3 (BST6) thin films are deposited by pulsed laser deposition method at different laser fluences keeping the oxygen pressure constant. X-ray diffraction analysis confirms the formation of single phase cubic BST6 thin films. The strain in the grown films have been investigated, and the results show that the strain is in increased under the application of varying laser fluences. It can be inferred that the laser fluence is an important parameter in tuning the dielectric/ferroelectric properties of the films under optimized conditions. The thin films microstructures have been studied using HRTEM, and the results shows the presence of (110) faceted planes of BST6 with dspacing ~ 2.72–2.79 Å. The optical band gap of the BST6 thin films was calculated by applying the Tauc relation from the transmission spectra in the 190–2500 nm range. The BST6 thin films grown at 2 J cm−2 which shows the best microstructural and optical properties was selected for the microwave dielectric measurements by depositing a test circular patch capacitor. The microwave tunability and dielectric constant (εr) of a well crystallized BST6 thin film were found to be ~ 56 and ~ 284%, respectively at 1 GHz making it suitable for applications in tunable microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Haghzadeh, C. Armiento, A. Akyurtlu, All-printed flexible microwave varactors and phase shifters based on a tunable BST/polymer. IEEE Trans. Microwave Theory Tech. 65, 2030–2042 (2017)

    Article  Google Scholar 

  2. K. Nadaud, C. Borderon, R. Renoud, A. Ghalem, A. Crunteanu, L. Huitema, F. Dumas-Bouchiat, P. Marchet, C. Champeaux, H.W. Gundel, Domain wall motions in BST ferroelectric thin films in the microwave frequency range. Appl. Phys. Lett. 109, 262902 (2016)

    Article  Google Scholar 

  3. L. Zhang, P. Wu, Y. Li, Z.Y. Cheng, J.C. Brewer, Preparation process and dielectric properties of Ba0.5Sr0.5TiO3–P(VDF-CTFE) nanocomposites. Compos. B 56, 284–289 (2014)

    Article  Google Scholar 

  4. H. Dong, J. Jian, H. Li, D. Jin, J. Chen, J. Cheng, Improved dielectric tunability of PZT/BST multilayer thin films on Ti substrates. J. Alloys Compd. 725, 54–59 (2017)

    Article  Google Scholar 

  5. T. Teranishi, R. Kanemoto, H. Hayashi, A. Kishimoto, Effect of the (Ba + Sr)/Ti ratio on the microwave-tunable properties of Ba0.6Sr0.4TiO3 ceramics. J. Am. Ceram. Soc. 100, 1037–1043 (2017)

    Article  Google Scholar 

  6. X. Ma, S. Li, Y. He, T. Liu, Y. Xu, The abnormal increase of tunability in ferroelectric-dielectric composite ceramics and its origin. J. Alloys Compd. 739, 755–763 (2018)

    Article  Google Scholar 

  7. P. Wu, M. Zhang, H. Wang, H. Tang, P. Bass, L. Zhang, Effect of coupling agents on the dielectric properties and energy storage of Ba0.5Sr0.5TiO3/P(VDF-CTFE) nanocomposites. AIP Adv. 7, 075210 (2017)

    Article  Google Scholar 

  8. P. Wu, L. Zhang, X. Shan, Microstructure and dielectric response of BaSrTiO3/P(VDF-CTFE) nanocomposites. Mater. Lett. 159, 72 (2015)

    Article  Google Scholar 

  9. P.C. Joshi, M.W. Cole, Mg-doped Ba0.6Sr0.4TiO3 thin films for tunable microwave applications. Appl. Phys. Lett. 77, 289–291 (2000)

    Article  Google Scholar 

  10. H. Wang, Y. Dong, Z. Wang, High tunable dielectric properties of Zn and Mg alternately doped Ba0.6Sr0.4TiO3 film varactors. J. Alloys Compd. 745, 651–658 (2018)

    Article  Google Scholar 

  11. S. Xi Ning, J. Chen, H. Zhang, Huang, L. Wang, Dielectric microwave properties of Si-integrated pulsed laser deposited (Ba,Sr)TiO3 thin films up to 110 GHz. Appl. Phys. Lett. 107, 052905 (2015)

    Article  Google Scholar 

  12. G. Subramanyam, M.W. Cole, N.X. Sun, T.S. Kalkur, N.M. Sbrockey, G.S. Tompa, X. Guo, C. Chen, S.P. Alpay, G.A. Rossetti, K. Dayal, L.-Q. Chen, D.G. Schlom, J. Appl. Phys. 114, 191301 (2013)

    Article  Google Scholar 

  13. J. Liao, X. Wei, Z. Xu, X. Wei, P. Wang, The structure and dielectric properties of a novel kind of doped Ba0.6Sr0.4TiO3 film. Mater. Chem. Phys. 135, 1030–1035 (2012)

    Article  Google Scholar 

  14. S.Z. Wang, J.X. Liao, Y.M. Hu, F. Gong, Z.Q. Xu, M.Q. Wu, Structures and dielectric performances of Mn/Y alternately doped BST films prepared by a novel preheating process. Mater. Chem. Phys. 193, 50–56 (2017)

    Article  Google Scholar 

  15. M.W. Cole, W.D. Nothwang, C. Hubbard, E. Ngo, M. Ervin, Low dielectric loss and enhanced tunability of Ba0.6Sr0.4TiO3 based thin films via material compositional design and optimized film processing methods. J. Appl. Phys. 93, 9218–9225 (2003)

    Article  Google Scholar 

  16. Y. Gim, T. Hudson, Y. Fan, C. Kwon, A.T. Findikoglu, B.J. Gibbons, B.H. Park, Q.X. Jia, Microstructure and dielectric properties of Ba1–xSrx–TiO3 films grown on LaAlO3 substrates. Appl. Phys. Lett. 77, 1200–1202 (2000)

    Article  Google Scholar 

  17. Y. Lin, J.-S. Lee, H. Wang, Y. Li, S.R. Foltyn, Q.X. Jia, G.E. Collis, A.K. Burrell, T.M. Mcclesdey, Structural and dielectric properties of epitaxial Ba1–xSrxTiO3 films grown on LaAlO3 substrates by polymer-assisted deposition. Appl. Phys. Lett. 85, 5007–5009 (2004)

    Article  Google Scholar 

  18. T.S. Kim, C.H. Kim, M.H. Oh, Structural and electrical properties of RF magnetron-sputtered Ba1–xSrxTiO3 thin films on indium-tin-oxide-coated glass substrate. J. Appl. Phys. 75, 7998–8003 (1994)

    Article  Google Scholar 

  19. S. Regnery, Y. Ding, P. Ehrhart, C.L. Jia, K. Szot, R. Thomas, R. Waser, Metal-organic chemical-vapor deposition of (Ba,Sr)TiO3: nucleation and growth on Pt-(111). J. Appl. Phys. 98, 084904 (2005)

    Article  Google Scholar 

  20. H. Chang, C. Gao, I. Takeuchi, Y. Yoo, J. Wang, P.G. Schultz, X.D. Xiang, R.P. Sharma, M. Downes, T. Venkatesan, Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film libraries for microwave applications. Appl. Phys. Lett. 72, 2185–2187 (1998)

    Article  Google Scholar 

  21. K. Terai, M. Lippmaa, P. Ahmet, T. Chikyow, T. FuJii, H. Koinuma, M. Kawasaki, In-plane lattice constant tuning of an oxide substrate with Ba1–xSrxTiO3 and BaTiO3 buffer layers. Appl. Phys. Lett. 80, 4437–4439 (2002)

    Article  Google Scholar 

  22. X.B. Yan, Y.C. Li, J.H. Zhao, Y. Li, G. Bai, S.Q. Zhu, Roles of grain boundary and oxygen vacancies in Ba0.6Sr0.4TiO3 films for resistive switching device application. Appl. Phys. Lett. 108, 033108 (2016)

    Article  Google Scholar 

  23. W. Luo, X. Chen, F. Junwei, Y.H.Z. Zheng, Q. Fu, Effect of Rb-doping on the dielectric and tunable properties of Ba0.6Sr0.4TiO3 thin films prepared by sol–gel. Ceram. Int. 42, 17229–17236 (2016)

    Article  Google Scholar 

  24. Q. Xu, D.-P. Di Zhan, H.-X. Huang, W. Liu, F. Chen, Zhang, Effect of oxygen-ion motion on dielectric properties of Ba0.6Sr0.4TiO3 thick films. Mater. Res. Bull. 70, 99–105 (2015)

    Article  Google Scholar 

  25. J. Yanlong Bian, Zhai, Effects of CeO2 buffer layer on the dielectric properties of Ba0.6Sr0.4TiO3 thin films prepared by sol–gel processing. J. Sol-Gel. Sci. Technol. 69, 40–46 (2014)

    Article  Google Scholar 

  26. M. Beres, K.M. Yu, J. Syzdek, S.S. Mao, Improvement in the electronic quality of pulsed laser deposited CuIn0.7Ga0.3Se2 thin films via post-deposition elemental sulfur annealing process. Thin Solid Films 608, 50–56 (2016)

    Article  Google Scholar 

  27. J. Greer, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, Hoboken, 2007)

    Google Scholar 

  28. K. Remes, K. Leppänen, T. Fabritius, Thermography based online characterization of conductive thin films in large-scale electronics fabrication. Opt. Express. 26, 1219 (2018)

    Article  Google Scholar 

  29. M. Saliba, J.-P. Correa-Baena, M. Gr-tzel, A. Hagfeldt, A. Abate, Perovskite solar cells: from the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 27, 2554–2569 (2018)

    Article  Google Scholar 

  30. C. Marco Bonelli, Cestari, A. Miotello, Pulsed laser deposition apparatus for applied research. Meas. Sci. Technol. 10, N27–N30 (1999)

    Article  Google Scholar 

  31. M. Rath, E. Varadarajan, V. Natarajan, M.R. Rao, A comparative study on macroscopic and nanoscale polarization mapping on large area PLD grown PZT thin films. Ceram. Int. 44, 8749–8755 (2018). https://doi.org/10.1016/j.ceramint.2018.01.098

    Article  Google Scholar 

  32. D. Preziosi, A. Sander, A. Barthelemy, M. Bibes, Reproducibility and off-stoichiometry issues in nickelate thin films grown by pulsed laser deposition, AIP Adv. 7, 015210 (2017)

    Article  Google Scholar 

  33. J. Schou, M. Gansukh, R.B. Ettlinger, A. Cazzaniga, M. Grossberg, M. KaukKuusik, S. Canulescu, Pulsed laser deposition of chalcogenide sulfides from multi and single-component targets: the non-stoichiometric material transfer. Appl. Phys. A 124, 78 (2018)

    Article  Google Scholar 

  34. M. Beres, K.M. Yu, J. Syzdek, S.S. Mao, Stoichiometry control in Cu2ZnSnS4 thin films grown by pulsed laser deposition. Mater. Chem. Phys. 205, 90–96 (2018)

    Article  Google Scholar 

  35. H. Nishikawa, T. Hasegawa, A. Miyake, Y. Tashiro, S. Komasa, Y. Hashimoto, Effect of laser fluence and ambient gas pressure on surface morphology and chemical composition of hydroxyapatite thin films deposited using pulsed laser deposition. APSUSC 427, 458–463 (2018)

    Google Scholar 

  36. L. Radhapiyari, A.R. James, O.P. Thakur, C. Prakash, Mater. Sci. Eng. B 117, 5–9 (2005)

    Article  Google Scholar 

  37. H. Chen, C. Yang, C. Fu, L. Zhao, Z. Gao, Appl. Surf. Sci. 252, 4171–4177 (2006)

    Article  Google Scholar 

  38. H. Chen, C. Yang, C. Fu, J. Zhang, J. Liao, L. Hu, Appl. Surf. Sci. 254, 3175–3179 (2008)

    Article  Google Scholar 

  39. K. Eom, T. Kim, J. Seo, J. Choi, J. Lee, Effect of laser fluence on electrical properties of (Sr075,La025)TiO3 thin films grown by pulsed-laser-deposition. J. Nanosci. Nanotechnol. 14, 8762–8765 (2014)

    Article  Google Scholar 

  40. C. Wang, B.L. Cheng, S.Y. Wang, H.B. Lu, Y.L. Zhou, Z.H. Chen, G.Z. Yang, Thin Solid Films 485, 82–89 (2005)

    Article  Google Scholar 

  41. Z.-G. Ban, S.P. Alpay, J. Appl. Phys. 91, 9288 (2002)

    Article  Google Scholar 

  42. W.-J. Lee, H.-G. Kim, S.-G. Yoon, Microstructure dependence of electrical properties of (Ba0.5Sr0.5)TiO3 thin films deposited on Pt/SiO2/Si. J. Appl. Phys. 80, 5891 (1996)

    Article  Google Scholar 

  43. Z. Saroukhani, N. Tahmasebi, S.M. Mahdavi, A. Nemati, Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition. Bull. Mater. Sci. 38(6), 1645–1650 (2015)

    Article  Google Scholar 

  44. S. Ramakanth, S. Hamad, S.V. Rao, K.C.J. Raju, AIP Adv. 5, 057139 (2015)

    Article  Google Scholar 

  45. M. Cernea, B.S. Vasile, A. Boni, A. Iuga, J. Alloys Compd. 587, 553–559 (2014)

    Article  Google Scholar 

  46. J.P. Goud, A. Joseph, S. Ramakanth, K.L. Naidu, K.C.J. Raju, AIP Conf. Proc. 1728, 020293, (2016)

    Article  Google Scholar 

  47. L. Naidu, K. Ghanashyam, M. Krishna, Effect of thermal annealing on disorder and optical properties of Cr/Si bilayer thin films. Philos. Mag. 94, 3431–3444 (2014)

    Article  Google Scholar 

  48. R. Swanepoel, J. Phys. E 16, 1214 (1983)

    Article  Google Scholar 

  49. J.C. Tauc, F. Abeles, Optical Properties of Solids (North-Holland Pub. Co., Amsterdam, 1972)

    Google Scholar 

  50. H.-Y. Tian, W.G. Luo, A.L. Ding, J. Choi, C. Lee, K. No, Thin Solid Films 408, 200–205 (2002)

    Article  Google Scholar 

  51. Y.H. Cheng, X.L. Qiao, J.G. Chen, Y.P. Wu, C.S. Xie, Y.Q. Wang, D.S. Xu, S.B. Mo, Y.B. Sund, Surf. Coat. Technol. 160, 269–276 (2002)

    Article  Google Scholar 

  52. J.P. Zhao, Z.Y. Chen, T. Yano, T. Ooie, M. Yoneda, J. Sakakibara, J. Appl. Phys. 89, 1634 (2001)

    Article  Google Scholar 

  53. Y.I. Yuzyuk, Phys. Solid State 54, 1026 (2012)

    Article  Google Scholar 

  54. R. Naik et al., Phys. Rev. B 61, 11367 (2000)

    Article  Google Scholar 

  55. Q. Zhang, J. Zhai, L. Kong, X. Yao, J. Appl. Phys. 112, 124112 (2012)

    Article  Google Scholar 

  56. L.Z. Cao, B.L. Cheng, S.Y. Wang, W.Y. Fu, S. Ding, Z.H. Sun, H.T. Yuan, Y.L. Zhou, Z.H. Chen, G.Z. Yang, J. Phys. Appl. Phys. 39, 2819 (2006)

    Article  Google Scholar 

  57. S.Y. Wang, B.L. Cheng, C. Wang, S.Y. Dai, K.J. Jin, Y.L. Zhou, H.B. Lu, Z.H. Chen, G.Z. Yang, J. Appl. Phys. 99, 013504 (2006)

    Article  Google Scholar 

  58. K. Sandeep, J.P. Goud, K.C.J. Raju, IEEE. (2016). https://doi.org/10.1109/ISAF.2016.7578099

    Google Scholar 

  59. S. Tappe, U. Böttger, R. Waser, Appl. Phys. Lett. 85, 624–626 (2004)

    Article  Google Scholar 

  60. S. Sandeep, J.P. Goud, K.C. James Raju, Resonant spectrum method for characterizing Ba0.5Sr0.5TiO3 based high overtone bulk acoustic wave resonators. Appl. Phys. Lett. 111, 012901 (2017)

    Article  Google Scholar 

  61. J.P. Goud, K. Sandeep, S.R. Emani, M.S. Alkathy, K.L. Naidu, K.C. James Raju, Ferroelectrics 516, 1–8 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from DST, DRDO, and UGC. The authors also acknowledge CFN University of Hyderabad for facilitating fabrication of test devices and also acknowledge to FESEM operator C. Sunitha, TEM operators M. Durga Prasad and S. Pankaj.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. James Raju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goud, J.P., Alkathy, M.S., Sandeep, K. et al. Influence of laser fluence on structural, optical and microwave dielectric properties of pulsed laser deposited Ba0.6Sr0.4TiO3 thin films. J Mater Sci: Mater Electron 29, 15973–15982 (2018). https://doi.org/10.1007/s10854-018-9683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9683-y

Navigation