Skip to main content
Log in

Covariant theory of Bose-Einstein condensates in curved spacetimes with electromagnetic interactions: The hydrodynamic approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We develop a hydrodynamic representation of the Klein-Gordon-Maxwell-Einstein equations. These equations combine quantum mechanics, electromagnetism, and general relativity. We consider the case of an arbitrary curved spacetime, the case of weak gravitational fields in a static or expanding background, and the nonrelativistic (Newtonian) limit. The Klein-Gordon-Maxwell-Einstein equations govern the evolution of a complex scalar field, possibly describing self-gravitating Bose-Einstein condensates, coupled to an electromagnetic field. They may find applications in the context of dark matter, boson stars, and neutron stars with a superfluid core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A.M. Dirac, Sov. Phys. Usp. 22, 648 (1979)

    Article  ADS  Google Scholar 

  2. L. de Broglie, Ann. Phys 3, 22 (1925)

    Google Scholar 

  3. A. Einstein, Ann. Phys. 322, 132 (1905)

    Article  Google Scholar 

  4. M. Bhaumik, Was Einstein wrong on quantum physics?, arXiv:1511.05098

  5. C. Davisson, L. Germer, Phys. Rev. 30, 707 (1927)

    ADS  Google Scholar 

  6. E. Schrödinger, Ann. Phys. 384, 361 (1926)

    Article  Google Scholar 

  7. E. Schrödinger, Ann. Phys. 384, 489 (1926)

    Article  Google Scholar 

  8. E. Schrödinger, Ann. Phys. 385, 437 (1926)

    Article  Google Scholar 

  9. E. Schrödinger, Ann. Phys. 386, 109 (1926)

    Article  Google Scholar 

  10. N. Bohr, Philos. Mag. 26, 1 (1913)

    Article  Google Scholar 

  11. N. Bohr, Philos. Mag. 26, 476 (1913)

    Article  Google Scholar 

  12. W. Heisenberg, Z. Phys. 33, 879 (1925)

    Article  ADS  Google Scholar 

  13. M. Born, P. Jordan, Z. Phys. 34, 858 (1925)

    Article  ADS  Google Scholar 

  14. M. Born, W. Heisenberg, P. Jordan, Z. Phys. 35, 557 (1926)

    Article  ADS  Google Scholar 

  15. P.A.M. Dirac, Proc. R. Soc. A 109, 642 (1925)

    Article  ADS  Google Scholar 

  16. P.A.M. Dirac, Proc. R. Soc. A 110, 561 (1926)

    Article  ADS  Google Scholar 

  17. E. Schrödinger, Ann. Phys. 384, 734 (1926)

    Article  Google Scholar 

  18. M. Born, Z. Phys. 38, 803 (1926)

    Article  ADS  Google Scholar 

  19. M. Born, Nature 119, 354 (1927)

    Article  ADS  Google Scholar 

  20. M. Born, Z. Phys. 40, 167 (1927)

    Article  ADS  Google Scholar 

  21. L. de Broglie, C.R. Acad. Sci. Paris 183, 272 (1926)

    Google Scholar 

  22. L. de Broglie, J. Phys. 7, 321 (1926)

    Google Scholar 

  23. P.A.M. Dirac, Proc. R. Soc. A 112, 661 (1926)

    Article  ADS  Google Scholar 

  24. G. Wentzel, Z. Phys. 38, 518 (1926)

    Article  ADS  Google Scholar 

  25. L. Brillouin, C.R. Acad. Sci. Paris 183, 24 (1926)

    Google Scholar 

  26. H.A. Kramers, Z. Phys. 39, 828 (1926)

    Article  ADS  Google Scholar 

  27. E. Schrödinger, Phys. Rev. 28, 1049 (1926)

    Article  ADS  Google Scholar 

  28. O. Klein, Z. Phys. 37, 895 (1926)

    Article  ADS  Google Scholar 

  29. V. Fock, Z. Phys. 38, 242 (1926)

    Article  ADS  Google Scholar 

  30. T. De Donder, F.H. van den Dungen, C.R. Acad. Sci. Paris 183, 22 (1926)

    Google Scholar 

  31. V. Fock, Z. Phys. 39, 226 (1926)

    Article  ADS  Google Scholar 

  32. J. Kudar, Ann. Phys. 386, 632 (1926)

    Article  Google Scholar 

  33. P. Ehrenfest, G.E. Uhlenbeck, Z. Phys. 39, 495 (1926)

    Article  ADS  Google Scholar 

  34. G. Gamow, D. Iwanenko, Z. Phys. 39, 865 (1926)

    Article  ADS  Google Scholar 

  35. W. Gordon, Z. Phys. 40, 117 (1926)

    Article  ADS  Google Scholar 

  36. T. De Donder, C.R. Acad. Sci. Paris 183, 594 (1926)

    Google Scholar 

  37. P.A.M. Dirac, Proc. Camb. Philos. Soc. 23, 500 (1927)

    Article  ADS  Google Scholar 

  38. E. Schrödinger, Ann. Phys. 387, 257 (1927)

    Article  Google Scholar 

  39. O. Klein, Z. Phys. 41, 407 (1927)

    Article  ADS  Google Scholar 

  40. E. Schrödinger, Ann. Phys. 387, 265 (1927)

    Article  Google Scholar 

  41. T. Kaluza, Zum Unitätsproblem der Physik, in Sitzungsberichte der K. Preussischen Akademie der Wissenschaften zu Berlin (1921) p. 966

  42. T. De Donder, Bull. Acad. R. Bel. 13, 79 (1927)

    Google Scholar 

  43. T. De Donder, Bull. Acad. R. Bel. 13, 103 (1927)

    Google Scholar 

  44. T. De Donder, Bull. Acad. R. Bel. 13, 504 (1927)

    Google Scholar 

  45. T. De Donder, Bull. Acad. R. Bel. 13, 756 (1927)

    Google Scholar 

  46. L. Rosenfeld, Bull. Acad. R. Bel. 13, 304 (1927)

    Google Scholar 

  47. L. Rosenfeld, Bull. Acad. R. Bel. 13, 447 (1927)

    Google Scholar 

  48. L. Rosenfeld, Bull. Acad. R. Bel. 13, 573 (1927)

    Google Scholar 

  49. L. Rosenfeld, Bull. Acad. R. Bel. 13, 661 (1927)

    Google Scholar 

  50. L. de Broglie, C.R. Acad. Sci. Paris 185, 380 (1927)

    Google Scholar 

  51. L. de Broglie, J. Phys. 8, 225 (1927)

    Google Scholar 

  52. P.A.M. Dirac, Proc. R. Soc. A 117, 610 (1928)

    Article  ADS  Google Scholar 

  53. G.E. Uhlenbeck, S. Goudsmit, Naturwiss. 13, 953 (1925)

    Article  ADS  Google Scholar 

  54. G.E. Uhlenbeck, S. Goudsmit, Nature 117, 264 (1926)

    Article  ADS  Google Scholar 

  55. W. Pauli, Naturwiss. 12, 741 (1924)

    Article  ADS  Google Scholar 

  56. W. Pauli, Z. Phys. 31, 373 (1925)

    Article  ADS  Google Scholar 

  57. W. Pauli, Z. Phys. 31, 765 (1925)

    Article  ADS  Google Scholar 

  58. A.K. Compton, J. Frankl. Inst. 192, 145 (1921)

    Article  Google Scholar 

  59. S. Goudsmit, Phys. Today 14, 18 (1961)

    Article  Google Scholar 

  60. S. Goudsmit, J. Phys. 28, 123 (1967)

    Article  Google Scholar 

  61. W. Pauli, Z. Phys. 43, 601 (1927)

    Article  ADS  Google Scholar 

  62. C.G. Darwin, Proc. R. Soc. A 116, 227 (1927)

    Article  ADS  Google Scholar 

  63. P.A.M. Dirac, Proc. R. Soc. A 126, 360 (1930)

    Article  ADS  Google Scholar 

  64. H. Weyl, Gruppentheorie und Quantenmechanik, 2nd ed. (Verlag, 1931) p. 234

  65. C. Anderson, Phys. Rev. 43, 491 (1933)

    Article  ADS  MathSciNet  Google Scholar 

  66. W. Pauli, V. Weisskopf, Helv. Phys. Act. 7, 709 (1934)

    Google Scholar 

  67. S.N. Bose, Z. Phys. 26, 178 (1924)

    Article  ADS  Google Scholar 

  68. A. Einstein, Sitzber. Kgl. Preuss. Akad. Wiss. 1, 3 (1925)

    Google Scholar 

  69. E. Fermi, Rend. Acc. Lincei 3, 145 (1926)

    Google Scholar 

  70. N. Bogoliubov, J. Phys. 11, 23 (1947)

    Google Scholar 

  71. K. Huang, C.N. Yang, Phys. Rev. 105, 767 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  72. T.D. Lee, K. Huang, C.N. Yang, Phys. Rev. 106, 1135 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  73. E.P. Gross, Ann. Phys. 4, 57 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  74. E.P. Gross, Nuovo Cimento 20, 454 (1961)

    Article  Google Scholar 

  75. E.P. Gross, J. Math. Phys. 4, 195 (1963)

    Article  ADS  Google Scholar 

  76. L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)

    Google Scholar 

  77. D.J. Kaup, Phys. Rev. 172, 1331 (1968)

    Article  ADS  Google Scholar 

  78. R. Ruffini, S. Bonazzola, Phys. Rev. 187, 1767 (1969)

    Article  ADS  Google Scholar 

  79. J.A. Wheeler, Phys. Rev. 97, 511 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  80. M. Colpi, S.L. Shapiro, I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  81. P.H. Chavanis, Phys. Rev. D 84, 043531 (2011)

    Article  ADS  Google Scholar 

  82. A. Suárez, V.H. Robles, T. Matos, Astrophys. Space Sci. Proc. 38, 107 (2014)

    Article  ADS  Google Scholar 

  83. T. Rindler-Daller, P.R. Shapiro, Astrophys. Space Sci. Proc. 38, 163 (2014)

    Article  ADS  Google Scholar 

  84. P.H. Chavanis, Self-gravitating Bose-Einstein condensates, in Quantum Aspects of Black Holes, edited by X. Calmet (Springer, 2015)

  85. E. Madelung, Z. Phys. 40, 322 (1927)

    Article  ADS  Google Scholar 

  86. E.H. Kennard, Phys. Rev. 31, 876 (1928)

    Article  ADS  Google Scholar 

  87. E.A. Spiegel, Physica D 1, 236 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  88. L. de Broglie, C.R. Acad. Sci. Paris 185, 1118 (1927)

    Google Scholar 

  89. F. London, Z. Phys. 42, 375 (1927)

    Article  ADS  Google Scholar 

  90. L. de Broglie, The Interpretation of Wave Mechanics with the help of Waves with Singular Regions, arXiv:1005.4534

  91. D. Bohm, Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  92. D. Bohm, Phys. Rev. 85, 180 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  93. T. Takabayasi, Prog. Theor. Phys. 8, 143 (1952)

    Article  ADS  Google Scholar 

  94. T. Takabayasi, Prog. Theor. Phys. 9, 187 (1953)

    Article  ADS  Google Scholar 

  95. L. de Broglie, C.R. Acad. Sci. Paris 233, 641 (1951)

    Google Scholar 

  96. L. de Broglie, C.R. Acad. Sci. Paris 234, 265 (1952)

    MathSciNet  Google Scholar 

  97. L. de Broglie, C.R. Acad. Sci. Paris 235, 557 (1952)

    Google Scholar 

  98. L. de Broglie, Found. Phys. 1, 5 (1970)

    Article  ADS  Google Scholar 

  99. L. Onsager, Nuovo Cimento 6, 279 (1949)

    Article  MathSciNet  Google Scholar 

  100. R.P. Feynman, Progress in Low Temperature Physics, Vol. 1 (North-Holland, Amsterdam, 1955)

  101. R.P. Feynman, Physica 24, 18 (1958)

    Article  ADS  Google Scholar 

  102. P.A.M. Dirac, Proc. R. Soc. A 133, 60 (1931)

    Article  ADS  Google Scholar 

  103. L. Landau, J. Phys. 5, 71 (1941)

    Google Scholar 

  104. F. London, Rev. Mod. Phys. 17, 310 (1945)

    Article  ADS  Google Scholar 

  105. C.G. Böhmer, T. Harko, J. Cosmol. Astropart. Phys. 06, 025 (2007)

    Article  Google Scholar 

  106. P.H. Chavanis, L. Delfini, Phys. Rev. D 84, 043532 (2011)

    Article  ADS  Google Scholar 

  107. P.H. Chavanis, Phys. Rev. D 84, 063518 (2011)

    Article  ADS  Google Scholar 

  108. P.H. Chavanis, Astron. Astrophys. 537, A127 (2012)

    Article  ADS  Google Scholar 

  109. T. Rindler-Daller, P.R. Shapiro, Mon. Not. R. Astron. Soc. 422, 135 (2012)

    Article  ADS  Google Scholar 

  110. P.H. Chavanis, T. Harko, Phys. Rev. D 86, 064011 (2012)

    Article  ADS  Google Scholar 

  111. A. Suárez, T. Matos, Mon. Not. R. Astron. Soc. 416, 87 (2011)

    ADS  Google Scholar 

  112. A. Suárez, T. Matos, Class. Quantum Grav. 31, 045015 (2014)

    Article  ADS  Google Scholar 

  113. A. Suárez, P.H. Chavanis, Phys. Rev. D 92, 023510 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  114. A. Suárez, P.H. Chavanis, J. Phys.: Conf. Ser. 654, 012088 (2015)

    Google Scholar 

  115. T. Matos, M.A. Rodríguez-Meza, J. Phys.: Conf. Ser. 545, 012009 (2014)

    Google Scholar 

  116. T. Matos, E. Castellanos, AIP Conf. Proc. 1577, 181 (2014)

    Article  ADS  Google Scholar 

  117. S. Weinberg, Gravitation and Cosmology (John Wiley, 1972)

  118. E. Schrödinger, Nature 169, 538 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  119. P.A.M. Dirac, Proc. R. Soc. A 209, 291 (1951)

    Article  ADS  Google Scholar 

  120. P.A.M. Dirac, Proc. R. Soc. A 212, 330 (1952)

    Article  ADS  Google Scholar 

  121. F. London, H. London, Proc. R. Soc. A 149, 71 (1935)

    Article  ADS  Google Scholar 

  122. C.-P. Ma, E. Bertschinger, Astrophys. J. 455, 7 (1995)

    Article  ADS  Google Scholar 

  123. V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger, Phys. Rep. 215, 203 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  124. B. Li, T. Rindler-Daller, P.R. Shapiro, Phys. Rev. D 89, 083536 (2014)

    Article  ADS  Google Scholar 

  125. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  126. A. Suárez, P.H. Chavanis, arXiv:1608.08624

  127. G. Manfredi, Eur. J. Phys. 34, 859 (2013)

    Article  Google Scholar 

  128. J.D. Jackson, Classical Electrodynamics (John Wiley, 1975)

  129. W. Meissner, R. Ochsenfeld, Naturwiss. 21, 787 (1933)

    Article  ADS  Google Scholar 

  130. L. de Broglie, C.R. Acad. Sci. Paris 180, 498 (1925)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Chavanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavanis, PH., Matos, T. Covariant theory of Bose-Einstein condensates in curved spacetimes with electromagnetic interactions: The hydrodynamic approach. Eur. Phys. J. Plus 132, 30 (2017). https://doi.org/10.1140/epjp/i2017-11292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11292-4

Navigation