Skip to main content
Log in

Investigation of the temperature field in the magnetic hyperthermia using FeCrNbB magnetic particles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The control of the temperature field within malignant tissues is an important task in the magnetic hyperthermia. The temperature analysis is a good method to focus the main parameters which can improve the heating mechanisms of the magnetic particles injected within tissues when the magnetic fields are applied. This paper analyses the temperature effects induced within tumoral tissues by the super-paramagnetic systems as FeCrNbB, magnetite and maghemite when an external time-dependent magnetic field is applied. A 3D temperature model which predicts the temperature field in a tumoral tissue was developed. The heat generation by Néel and Brown relaxations was modeled using the thermal and magnetic properties of the FeCrNbB particles experimentally determined. Interconnection between particle parameters (composition, size, magnetic and thermal properties), optimum dosage (volume concentration) and the magnetic field parameters (frequency and magnetic field intensity) was studied. The FeCrNbB magnetic systems have a particular behavior with the frequency and amplitude of the AC magnetic field. The temperature gradients induced within the tumor as a result of the heating in the magnetic field are smaller than the ones induced by the magnetite systems. This temperature behaviour can be an advantage in the controlled heating of the tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ihab M. Obaidat, Bashar Issa, Yousef Haik, Nanomaterials 5, 63 (2015)

    Article  Google Scholar 

  2. P. Guardia, R. Di Corato, L. Lartigue, C. Wilhelm, A. Espinosa, M. Garcia-Hernandez, F. Gazeau, L. Manna, T. Pellegrino, ACS Nano 6, 3080 (2012)

    Article  Google Scholar 

  3. J. Carrey, B. Mehdaoui, M. Respaud, J. Appl. Phys. 109, 083921 (2011)

    Article  ADS  Google Scholar 

  4. Q.A. Pankhurst, BT Technol. J. 24, 33 (2006)

    Article  Google Scholar 

  5. N. Lupu, H. Chiriac, S. Corodeanu, G. Ababei, IEEE Trans. Magn. 47, 3791 (2011)

    Article  ADS  Google Scholar 

  6. H. Chiriac, T. Petreus, E. Carasevici, L. Labusca, D.D. Herea, C. Danceanu, L. Lupu, J. Magn. & Magn. Mater. 380, 13 (2015)

    Article  ADS  Google Scholar 

  7. H. Chiriac, N. Lupu, M. Lostun, G. Ababei, M. Grigoras, C. Danceanu, J. Appl. Phys. 115, 17B520 (2014)

    Article  Google Scholar 

  8. I. Astefanoaei, I. Dumitru, H. Chiriac, A. Stancu, J. Appl. Phys. 115, 17B531 (2014)

    Article  Google Scholar 

  9. I. Astefanoaei, I. Dumitru, A. Stancu, H. Chiriac, Chin. Phys. B 23, 044401 (2014)

    Article  Google Scholar 

  10. I. Astefanoaei, I. Dumitru, H. Chiriac, A. Stancu, IEEE Trans. Magn. 50, 11 (2014)

    Article  Google Scholar 

  11. COMSOL Multiphysics, Reference Manual, version 4.4

  12. Q.A. Pankhurst, J. Connlly, S.K. Jones, J. Dobson, J. Phys. D: Appl. Phys. D 36, 167 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iordana Astefanoaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astefanoaei, I., Chiriac, H. & Stancu, A. Investigation of the temperature field in the magnetic hyperthermia using FeCrNbB magnetic particles. Eur. Phys. J. Plus 131, 322 (2016). https://doi.org/10.1140/epjp/i2016-16322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16322-1

Navigation