Skip to main content
Log in

Study of heating curves generated by magnetite nanoparticles aiming application in magnetic hyperthermia

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Malignant tumors occur by uncontrolled multiplication of the body's cells. Currently, a promising technique, called magnetic hyperthermia, has been intensively researched. The technique makes it possible to interrupt the growth of tumor cells by the localized application of heat from the magnetization/demagnetization of magnetic nanoparticles (the Joule effect). The amount of heat generated depends on the magnetic material and the characteristics of the external magnetic field. In this work, magnetite Fe3O4 particles (core–shell layer type) were synthesized by the wet coprecipitation method and coated with a polymer blend of polyethylene glycol and polyvinylpyrrolidone (PEG/PVP). The nanoparticles were subjected to a magnetic field of intensity equal to 12 kA m−1 and frequency 202 kHz. Under these conditions, specific absorption rate (SAR) values between 15–48 W g−1 were obtained. The heating curves obtained were adjusted with a proposed mathematical model. The adjustments were satisfactory and showed a good correlation coefficient (at an averaged level of 0.99). In addition, hysteresis curves and FTIR spectra were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

I :

Electric current, [A]

f :

Frequency, [kHz]

t :

Magnetic field exposure time, [min]

ΔT :

Temperature variation in the hyperthermia assay, [°C]

PEG:

Polyethylene glycol

PVP:

Polyvinylpyrrolidone

SAR:

Specific absorption rate

MHF:

Magnetic fluid hyperthermia

References

  • Abdellahia M et al (2018) Diopside-magnetite: a novel nanocomposite for hyperthermia applications [Artigo]. J Mech Behav Biomed Mater 77:534–538

    Article  Google Scholar 

  • Abenojar EC et al (2016) Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. [Artigo]. Progress Natural Sci Mater Int 26:440–448

    Article  CAS  Google Scholar 

  • Albarqi HA et al (2019) Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia [Artigo]. ACS Nano 13(6):6383–6395

    Article  CAS  Google Scholar 

  • Borderlon DE et al (2011) Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields [Artigo]. J Appl Phy. 2011:109

    Google Scholar 

  • Brito EL et al (2019) Superparamagnetic magnetite/IPEC particles [Artigo]. Colloids Surf A 560:376–383

    Article  CAS  Google Scholar 

  • Cazares-Cortes E et al (2019) Recent insights in magnetic hyperthermia: from the “hot-spot” effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids [Artigo]. Adv Drug Deliv Rev. 138(1):233–246

    Article  CAS  Google Scholar 

  • Di Corato R et al (2015) Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano 9:2904–2916

    Article  Google Scholar 

  • Ding Q et al (2017) Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia [Artigo]. Biomaterials 124:35–46

    Article  CAS  Google Scholar 

  • Espinosa A et al (2018) Magnetic (Hyper)thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo [Artigo]. Adv Funct Mater 37(28):1–33

    Google Scholar 

  • Fortin J-P (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia [Artigo]. J Am Chem Soc 129:2628–2635

    Article  CAS  Google Scholar 

  • Gas P (2019) Behavior of helical coil with water cooling channel and temperature dependent conductivity of copper winding used for MFH purpose. IOP Conf Ser Earth Environ Sci 214:012124

    Article  Google Scholar 

  • Gas P, Miaskowski A (2015) Specifying the ferrofluid parameters important from the viewpoint of magnetic fluid hyperthermia [Artigo]. Sel Probl Electr Eng Electron (WZEE) IEEE 2015:1–6

    Google Scholar 

  • Gas P et al (2020) Modelling the tumor temperature distribution in anatomically correct female breast phantom [Artigo]. Przeglad Elektrotechniczny 96(2):146–149

    Google Scholar 

  • Gupta KA, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [Artigo]. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Iglesias G et al (2016) Magnetic hyperthermia with magnetite nanoparticles: electrostatic and polymeric stabilization [Artigo]. Colloid Polym Sci 294:1541–1550

    Article  CAS  Google Scholar 

  • Iglesias GR et al (2019) Enhancement of magnetic hyperthermia by mixing synthetic inorganic and biomimetic magnetic nanoparticles [Artigo]. Pharmaceutics 11:2–16

    Article  Google Scholar 

  • Indulekhaa S et al (2017) Dual responsive magnetic composite nanogels for thermo-chemotherapy [Artigo]. Colloids Surf, B 155:304–313

    Article  Google Scholar 

  • Iwasaki T (2013) Simple and rapid synthesis of magnetite/hydroxyapatite composites for hyperthermia treatments via a mechanochemical route [Artigo]. Int J Mol Sci 14:9365–9378

    Article  Google Scholar 

  • Jafari M et al (2016) Synthesizing and characterizing functionalized short multiwall carbon nanotubes with folate, magnetite and polyethylene glycol as multitargeted nanocarrier of anti-cancer drugs [Artigo]. Iran J Pharm Res 15(2):449–456

    PubMed  PubMed Central  Google Scholar 

  • Kim DK et al (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles [Artigo]. J Magnet Magnet Mater 225:30–36

    Article  CAS  Google Scholar 

  • Kurgan E, Gas P (2015) Simulation of the electromagnetic field and temperature distribution in human tissue in RF hyperthermia [Artigo]. Przeglad Elektrotechniczny 91(1):169–172

    Google Scholar 

  • Kurgan E, Gas P (2017) Cooling effects inside water-cooled inductors for magnetic fluid hyperthermia. In: Proceedings of the 2017 progress in applied electrical engineering (PAEE), Koscielisko, Poland, 25–30 June 2017, pp 1–4

  • Laurent S et al (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles [Artigo]. Adv Colloid Interface Sci 166:8–23

    Article  CAS  Google Scholar 

  • Lee EH et al (2012) Magnetite nanoparticles dispersed within nanoporous aerogels for hyperthermia application [Artigo]. Curr Appl Phys 12:S47–S52

    Article  Google Scholar 

  • Linh PH et al (2018) Dextran coated magnetite high susceptibility nanoparticles for hyperthermia applications [Artigo]. J Magn Magn Mater 460:128–136

    Article  CAS  Google Scholar 

  • Ma M et al (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane [Artigo]. Colloids Surf A Physicochem Eng Aspects 212:219–226

    Article  CAS  Google Scholar 

  • Mahopatra J et al (2019) Inductive thermal effect of ferrite magnetic nanoparticles [Artigo]. Materials 19(12):3208

    Article  Google Scholar 

  • Muela A et al (2016) Optimal parameters for hyperthermia treatment using biomineralized magnetite nanoparticles: theoretical and experimental approach [Artigo]. J Phys Chem C 120:24437–24448

    Article  CAS  Google Scholar 

  • Obre-Lópeza MB et al (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment [Artigo]. Rep Pract Oncol Radiotherapy 18:397–400

    Article  Google Scholar 

  • Oh Y et al (2017) Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe2O4 nanoparticles [Artigo]. Biochimie 133:7–19

    Article  CAS  Google Scholar 

  • Parvanian S et al (2017) Multifunctional nanoparticle developments in cancer diagnosis and treatment [Artigo]. Sens Bio-Sens Res 13:81–87

    Article  Google Scholar 

  • Périgo EA et al (2013) On the specific absorption rate of hyperthermia fluids [Artigo]. Appl Phys Lett 2013:103

    Google Scholar 

  • Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances [Artigo]. Mater Today 2016:19

    Google Scholar 

  • Reyes-Ortega F et al (2018) Magnetic nanoparticles coated with a thermosensitive polymer with hyperthermia properties [Artigo]. Polymers 10:1–15

    Google Scholar 

  • Sangnier AP et al (2018) Targeted thermal therapy with genetically engineered magnetite magnetosomes@RGD: photothermia is far more efficient than magnetic hyperthermia [Artigo]. J Control Release 279:271–281

    Article  Google Scholar 

  • Sharifi I et al (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications [Artigo]. J Magn Magn Mater 324:903–915

    Article  CAS  Google Scholar 

  • Si S et al (2004) Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes [Artigo]. Chem Mater 16:3489–3496

    Article  CAS  Google Scholar 

  • The Nguyen D, Kim KS (2016) Controlled synthesis of monodisperse magnetite nanoparticles for hyperthermia-based treatments [Artigo]. Powder Technol 301:1112–1118

    Article  Google Scholar 

  • Van de Walle A, Plan Sangnier A, Abou-Hassan A, Curcio A, Hémadi M, Menguy N, Lalatonne Y, Luciani N, Wilhelm C (2019) Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. Proc Nat Acad Sci 116(10):4044–4053

    Article  Google Scholar 

  • Wu K, Wang JP (2017) Magnetic hyperthermia performance of magnetite nanoparticle assemblies under different driving fields [Artigo]. AIP Adv 2017:7

    Google Scholar 

  • Zayed MA et al (2016) Analytical characterization of hematite/magnetite ferrofluid nanocomposites for hyperthermia purposes [Artigo]. J Supercond Nov Magn 29:2899–2916

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Elio Perigo for hyperthermia measurements. M.F. de Campos thanks FAPERJ and CNPq. F.A.S. da Silva thanks CAPES, Finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. S. da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.A.S., de Campos, M.F. Study of heating curves generated by magnetite nanoparticles aiming application in magnetic hyperthermia. Braz. J. Chem. Eng. 37, 543–553 (2020). https://doi.org/10.1007/s43153-020-00063-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-020-00063-5

Keywords

Navigation