Skip to main content
Log in

All-electron scalar relativistic calculation of water molecule adsorption onto small gold clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

An all-electron scalar relativistic calculation was performed on Au n H2O (n = 1–13) clusters using density functional theory (DFT) with the generalized gradient approximation at PW91 level. The calculation results reveal that, after adsorption, the small gold cluster would like to bond with oxygen and the H2O molecule prefers to occupy the single fold coordination site. Reflecting the strong scalar relativistic effect, Au n geometries are distorted slightly but still maintain a planar structure. The Au–Au bond is strengthened and the H–O bond is weakened, as manifested by the shortening of the Au–Au bond-length and the lengthening of the H–O bond-length. The H–O–H bond angle becomes slightly larger. The enhancement of reactivity of the H2O molecule is obvious. The Au–O bond-lengths, adsorption energies, VIPs, HLGs, HOMO (LUMO) energy levels, charge transfers and the highest vibrational frequencies of the Au–O mode for Au n H2O clusters exhibit an obvious odd-even oscillation. The most favorable adsorption between small gold clusters and the H2O molecule takes place when the H2O molecule is adsorbed onto an even-numbered Au n cluster and becomes an Au n H2O cluster with an even number of valence electrons. The odd–even alteration of magnetic moments is observed in Au n H2O clusters and may serve as material with a tunable code capacity of “0” and “1” by adsorbing a H2O molecule onto an odd or even-numbered small gold cluster.

Lowest energy geometry for Au10H2O cluster. The average Au–Au, Au–O, and H–O bond-lengths (in Ångstrom) and the H–O–H bond angle are shown next to the cluster

Size dependence of vertical ionization potentials (VIP), HOMO–LUMO gaps (HLG), highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level for Au n H2O clusters

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meng S, Wang EG, Gao SW (2004) Phys Rev B 69:195404–195416

    Article  Google Scholar 

  2. Li JB, Zhu SL, Li Y, Wang FH (2007) Phys Rev B 76:235433–235440

    Article  Google Scholar 

  3. Cho JH, Kleinman L (2002) Phys Rev B 66:113306–113309

    Article  Google Scholar 

  4. Materzanini G, Tantardini GF, Lindan PJD, Saalfrank P (2005) Phys Rev B 71:155414–155430

    Article  Google Scholar 

  5. Blanco R, Orts JM (2008) Electrochim Acta 53:7796–7804

    Article  CAS  Google Scholar 

  6. Henderson MA (2002) Surf Sci Rep 46:1–308

    Article  CAS  Google Scholar 

  7. Taylor CD, Neurock M (2005) Curr Opin Solid State Mater Sci 9:49–65

    Article  CAS  Google Scholar 

  8. Clay C, Hodgson A (2005) Curr Opin Solid State Mater Sci 9:11–18

    Article  CAS  Google Scholar 

  9. Suzuki Y, Yamashita K (2010) Chem Phys Lett 486:48–52

    Article  CAS  Google Scholar 

  10. Prestianni A, Martorana A, Labat F, Ciofini I, Adamo C (2009) J Mol Struct Theochem 903:34–40

    Article  CAS  Google Scholar 

  11. Padilla-Campos L (2008) J Mol Struct Theochem 851:15–21

    Article  CAS  Google Scholar 

  12. Assadollahzadeh B, Schwerdtfeger P (2009) J Chem Phys 131:064306–064316

    Article  Google Scholar 

  13. Kang GJ, Chen ZX, Li Z, He X (2009) J Chem Phys 130:034701–034706

    Article  Google Scholar 

  14. Li GP, Hamilton IP (2006) Chem Phys Lett 420:474–479

    Article  CAS  Google Scholar 

  15. Chrétien S, Buratto SK, Metiu H (2007) Curr Opin Solid State Mater Sci 11:62–75

    Article  Google Scholar 

  16. Meier DC, Goodman DW (2004) J Am Chem Soc 126:1892–1899

    Article  CAS  Google Scholar 

  17. Bernhardt TM (2005) Int J Mass Spectrom 243:1–29

    Article  CAS  Google Scholar 

  18. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175–192

    Article  CAS  Google Scholar 

  19. Boccuzzi F, Chiorino A, Manzoli M, Haruta M (2001) J Catal 202:256–267

    Article  CAS  Google Scholar 

  20. Mul G, Zwijnenburg A, van der Linden B, Makkee M, Moulijn JA (2001) J Catal 201:128–137

    Article  CAS  Google Scholar 

  21. Jia JF, Haraki K, Kondo JN, Domen K, Tamaru K (2000) J Phys Chem B 104:11153–11156

    Article  CAS  Google Scholar 

  22. Sárkány A, Révay Z (2003) Appl Catal A:Gen 243:347–355

    Article  Google Scholar 

  23. Ju SP (2005) J Chem Phys 122:094718–094723

    Article  Google Scholar 

  24. Chang CI, Lee WJ, Young TF, Ju SP, Chang CW, Chen HL, Chang JG (2008) J Chem Phys 128:154703–154712

    Article  Google Scholar 

  25. Weng MH, Lee WJ, Ju SP, Chao CH, Hsieh NK, Chang JG, Chen HL (2008) J Chem Phys 128:174705–174713

    Article  Google Scholar 

  26. Choudhary TV, Goodman DW (2002) Top Catal 21:1–12

    Article  Google Scholar 

  27. Fernandez EM, Soler JM, Garzon LL, Balbas C (2004) Phys Rev B 70:165403–165416

    Article  Google Scholar 

  28. Orita H, Itoh N, Inada Y (2004) Chem Phys Lett 384:271–276

    Article  CAS  Google Scholar 

  29. Lee YS, McLean AD (1982) J Chem Phys 76:735–736

    Article  CAS  Google Scholar 

  30. Datta SN, Ewig CS (1982) Chem Phys Lett 85:443–446

    Article  CAS  Google Scholar 

  31. Hakkinen H, Landman U (2000) Phys Rev B 62:R2287–R2290

    Article  CAS  Google Scholar 

  32. Myoung H, Ge M, Sahu BR, Tarakeswar P, Kim KS (2003) J Chem Phys 107:9994–10002

    Google Scholar 

  33. Fernandez EM, Soler JM, Garzon LL, Balbas C (2004) Phys Rev B 70:165403–165416

    Article  Google Scholar 

  34. Mao HP, Wang HY, Ni Y, Xu GL (2004) Acta Phys Sin 53:1766–1771

    CAS  Google Scholar 

  35. Deka A, Deka RC (2008) J Mol Struct Theochem 870:83–93

    Article  CAS  Google Scholar 

  36. Hakkinen H, Yoon B, Landman U, Li X, Zhai HJ, Wang LS (2003) J Phys Chem A 107:6168–6175

    Article  Google Scholar 

  37. Feller D, Glendening ED, de Jong WA (1999) J Chem Phys 110:1475–1491

    Article  CAS  Google Scholar 

  38. Schröder D, Schwarz H, Hrušák J, Pyykkö P (1998) Inorg Chem 37:624–632

    Article  Google Scholar 

  39. (1993-1994) In: Lide DR (ed) CRC Handbook of chemistry and physics. Chemical Rubber Company, Boca Raton, pp74–75

  40. Cao ZX, Wang YJ, Zhu J, Wu W, Zhang Q (2002) J Phys Chem B106:9649–9654

    Google Scholar 

  41. Poater A, Duran M, Jaque P, Toro-Labbe A, Sola M (2006) J Phys Chem B 110:6526–6536

    Article  CAS  Google Scholar 

  42. Ding XL, Li ZY, Yang JL, Hou JG, Zhu QS (2004) J Chem Phys 121:2558–2562

    Article  CAS  Google Scholar 

  43. Wu X, Senapati L, Nayak SK, Selloni A, Hajaligol M (2002) J Chem Phys 117:4010–4015

    Article  CAS  Google Scholar 

  44. Ghebriel HW, Kshirsagar A (2007) J Chem Phys 126:244705–244713

    Article  Google Scholar 

  45. Phala S, Klatt G, Steen EV (2004) Chem Phys Lett 395:33–37

    Article  CAS  Google Scholar 

  46. Eberhart ME, Handley RC, Johnson KH (1984) Phys Rev B 29:1097–1100

    Article  CAS  Google Scholar 

  47. Ding XL, Li ZY, Yang JL, Hou JG, Zhu QS (2004) J Chem Phys 120:9594–9601

    Article  CAS  Google Scholar 

  48. Zhang M, He LM, Zhao LX, Feng XJ, Cao W, Luo Y (2009) J Mol Struct Theochem 911:65–69

    Article  CAS  Google Scholar 

  49. Torres M, Fernández E, Balbás L (2006) Phys Rev B 71:155412–155418

    Article  Google Scholar 

  50. Majumder C, Kandalam A, Jena P (2006) Phys Rev B 74:205437–205442

    Article  Google Scholar 

  51. Janssens E, Tanaka H, Neukermans S, Silverans RE, Lievens P (2004) Phys Rev B69:085402–085410

    Google Scholar 

  52. Panas I, Siegbahn P, Walhgren U (1987) Chem Phys 112:325–337

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the Nature Science Foundation of Chongqing city. No. CSTC - 2007BB4137.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-jun Kuang or Xin-qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, Xj., Wang, Xq. & Liu, Gb. All-electron scalar relativistic calculation of water molecule adsorption onto small gold clusters. J Mol Model 17, 2005–2016 (2011). https://doi.org/10.1007/s00894-010-0910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0910-6

Keywords

PACS

Navigation