Skip to main content
Log in

The onset of MHD nanofluid convection with Hall current effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the combined effects of Hall current and magnetic field on the onset of convection in an electrically conducting nanofluid layer heated from below is investigated. A physically more realistic boundary condition on the nanoparticle volume fraction is taken i.e. the nanoparticle flux is assumed to be zero rather than prescribing a nanoparticle volume fraction on the rigid impermeable boundaries. The employed model incorporates the effects of Brownian motion and thermophoresis. The resulting eigenvalue problem is solved using the Galerkin method. The results obtained during the analysis are presented graphically for an alumina-water nanofluid. It is observed that the effect of smaller values of the Hall current parameter and the nanoparticle parameters accelerate the onset of convection, while larger values of the Hall current parameter (≥ 15) have no effect on the system stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Rayleigh, Philos. Mag. 32, 529 (1916).

    Article  Google Scholar 

  2. S.K. Wilson, J. Eng. Math. 27, 161 (1993).

    Article  MATH  Google Scholar 

  3. M.I. Shliomis, B.L. Smorodin, J. Magn. & Magn. Mater. 252, 197 (2002).

    Article  ADS  Google Scholar 

  4. M.I. Shliomis, B.L. Smorodin, S. Kamiyama, Philos. Mag. 83, 2139 (2003).

    Article  ADS  Google Scholar 

  5. Sunil, P. Chand, P.K. Bharti, A. Mahajan, J. Magn. & Magn. Mater. 320, 316 (2008).

    Article  ADS  Google Scholar 

  6. S. Chandrasekhar, Hydrodynamic and Hydromagnetic stability (Oxford University Press, Oxford, 1961).

  7. H. Sato, J. Phys. Soc. Jpn. 16, 1427 (1961).

    Article  MATH  ADS  Google Scholar 

  8. I. Tani, J. Aerospace Sci. 29, 297 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Sherman, J. Fluid Mech. 25, 621 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Sherman, G.W. Sutton, Magnetohydrodynamics (Northwestern University Press, Evanston, USA, 1962).

  11. A. Raptis, P.C. Ram, Int. Commun. Heat Mass Transfer 11, 385 (1984).

    Article  Google Scholar 

  12. N. Rani, S.K. Tomar, Appl. Math. Modell. 34, 508 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Singh, C.B. Mehta, J. Fluids 2013, 910531 (2013).

    Article  Google Scholar 

  14. L. Palese, A. Georgescu, Int. J. Eng. Sci. 42, 1001 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  15. W.A. Khan, O.D. Makinde, Z.H. Khan, Int. J. Heat Mass Trans. 74, 285 (2014).

    Article  Google Scholar 

  16. R. Saidur, K.Y. Leong, H.A. Mohammad, Renew. Sustain. Energy Rev. 15, 1646 (2011).

    Article  Google Scholar 

  17. K.V. Wong, O.D. Leon, Adv. Mech. Eng. 2010, 519659 (2010).

    Google Scholar 

  18. B. Ghasemi, S.M. Aminossadati, A. Raisi, Int. J. Therm. Sci. 50, 1748 (2011).

    Article  Google Scholar 

  19. M.A.A. Hamada, I. Pop, A.I.Md. Ismail, Nonlinear Anal. Real World Appl. 12, 1338 (2011).

    Article  MathSciNet  Google Scholar 

  20. D. Yadav, R. Bhargava, G.S. Agrawal, J. Eng. Math. 80, 147 (2013).

    Article  MathSciNet  Google Scholar 

  21. D. Yadav, R. Bhargava, G.S. Agrawal, G.S. Hwang, Jinho Lee, M.C. Kim, Asia-Pacific J. Chem. Eng. 9, 663 (2014).

    Article  Google Scholar 

  22. A. Zeeshan, R. Ellahi, M. Hassan, Eur. Phys. J. Plus 129, 261 (2014).

    Article  Google Scholar 

  23. U. Gupta, J. Ahuja, R.K. Wanchoo, Int. J. Heat Mass Trans. 64, 1163 (2013).

    Article  Google Scholar 

  24. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 68, 211 (2014).

    Article  Google Scholar 

  25. J. Buongiorno, ASME J. Heat Transfer 128, 240 (2006).

    Article  Google Scholar 

  26. Y. Xuan, W. Roetzel, Int. J. Heat Mass Transfer 43, 3701 (2000).

    Article  MATH  Google Scholar 

  27. D. Yadav, J. Lee, J. Nanofluids 4, 335 (2015).

    Article  Google Scholar 

  28. K.V. Wong, T. Kurma, Nanotechnology 19, 345702 (2008).

    Article  ADS  Google Scholar 

  29. A.V. Kuznetsov, Nanoscale Res. Lett. 6, 100 (2011).

    Article  ADS  Google Scholar 

  30. A.V. Kuznetsov, Int. Commun. Heat Mass Transfer 37, 1421 (2010).

    Article  Google Scholar 

  31. A.V. Kuznetsov, Eur. J. Mech. B/Fluids 30, 156 (2011).

    Article  MATH  ADS  Google Scholar 

  32. D. Yadav, G.S. Agrawal, R. Bhargava, Int. J. Theor. Appl. Multiscale Mech. 2, 198 (2012).

    Article  Google Scholar 

  33. D. Yadav, R. Bhargava, G.S. Agrawal, Int. J. Therm. Sci. 60, 244 (2012).

    Article  Google Scholar 

  34. D. Yadav, M.C. Kim, Comp. Fluids 117, 139 (2015).

    Article  MathSciNet  Google Scholar 

  35. D. Yadav, R. Bhargava, G.S. Agrawal, Int. J. Heat Mass Transfer 63, 313 (2013).

    Article  Google Scholar 

  36. D. Yadav, G.S. Agrawal, R. Bhargava, J. Porous Media 16, 105 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Lee, J. The onset of MHD nanofluid convection with Hall current effect. Eur. Phys. J. Plus 130, 162 (2015). https://doi.org/10.1140/epjp/i2015-15162-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15162-9

Keywords

Navigation