Skip to main content
Log in

Bifurcations and chaotic thresholds for the spring-pendulum oscillator with irrational and fractional nonlinear restoring forces

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Nonlinear dynamical systems with irrational and fractional nonlinear restoring forces often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the global bifurcations and the chaos directly for a nonlinear system with irrational and fractional nonlinear restoring forces avoiding the conventional Taylor's expansion to retain the natural characteristics of the system. By introducing a particular dimensionless representation and a series of transformations, the two-degree-of-freedom system can be transformed into a perturbed Hamiltonian system. The extended Melnikov method is directly used to detect the chaotic threshold of the perturbed system theoretically, which overcomes the barrier caused by solving theoretical solution for the homoclinic orbit of the unperturbed system. The numerical simulations are carried out to demonstrate the complicated dynamics of the nonlinear spring-pendulum system, which show the efficiency of the criteria for chaotic motion in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.J. Cao, M. Wiercigroch, E. Pavlovskaia, C. Grebogi, J.M.T. Thompson, Phys. Rev. E 74, 046218 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  2. Q.J. Cao, M. Wiercigroch, E.E. Pavlovskaia, C. Grebogi, J.M.T. Thompson, Int. J. Non-Linear Mech. 43, 462 (2008).

    Article  ADS  Google Scholar 

  3. R.L. Tian, Q.J. Cao, S.P. Yang, Nonlinear Dyn. 59, 19 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  4. Q.J. Cao, M. Wiercigroch, E.E. Pavlovskaia, J.M.T. Thompson, C. Grebogi, Philos. Trans. R. Soc. A 366, 635 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. R.L. Tian, Q.J. Cao, Z.X. Li, Chin. Phys. Lett. 27, 074701 (2010).

    Article  ADS  Google Scholar 

  6. S.K. Lai, Y. Xiang, Comput. Math. Appl. 60, 2078 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  7. Q.J. Cao, Y.P. Xiong, M. Wiercigroch, J. Appl. Anal. Comput. 1, 183 (2011).

    MathSciNet  Google Scholar 

  8. R.L. Tian, X.W. Yang, Q.J. Cao, Q.L. Wu, Chin. Phys. B 21, 020503 (2012).

    Article  ADS  Google Scholar 

  9. Q.J. Cao, D. Wang, Y.S. Chen, M. Wiercigroch, J. Theor. Appl. Mech. Pol. 50, 701 (2012).

    Google Scholar 

  10. E.L. Chen, Q.J. Cao, M. Feng, R.L. Tian, Chinese J. Theor. Appl. Mech. 44, 584 (2012) (in Chinese).

    Google Scholar 

  11. R.L. Tian, Q.L. Wu, Z.J. Liu, X.W. Yang, Chin. Phys. Lett. 29, 084706 (2012).

    Article  ADS  Google Scholar 

  12. R.L. Tian, X.W. Yang, Q.J. Cao, Y.W. Han, Int. J. Bifurcat. Chaos 22, 12501081 (2012).

    Article  Google Scholar 

  13. R.L. Tian, Q.L. Wu, X.W. Yang, C.D. Si, Eur. Phys. J. Plus 128, 80 (2013).

    Article  Google Scholar 

  14. Q.J. Cao, N. Han, R.L. Tian, Chin. Phys. Lett. 28, 0605021 (2011).

    Google Scholar 

  15. N. Han, Q.J. Cao, Int. J. Bifurcat. Chaos 23, 13500741 (2013).

    Article  MathSciNet  Google Scholar 

  16. Y.W. Han, Q.J. Cao, Y.S. Chen, M. Wiercigroch, Sci. China Phys. Mech. Astron. 55, 1832 (2012).

    Article  ADS  Google Scholar 

  17. A. Léger, E. Pratt, Q.J. Cao, Nonlinear Dyn. 70, 511 (2012).

    Article  Google Scholar 

  18. X.W. Yang, R.L. Tian, Q. Zhang, Eur. Phys. J. Plus 128, 159 (2013).

    Article  ADS  Google Scholar 

  19. S. Wiggins, Global bifurcations and chaos-analytical methods (Springer, New York, 1988).

  20. G. Kovacic, S. Wiggins, Physica D 57, 185 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. K. Yagasaki, Nonlinearity 12, 799 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. K. Yagasaki, Physica D 214, 169 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. T.J. Kaper, G. Kovacic, Trans. Am. Math. Soc. 348, 3835 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Camassa, G. Kovacic, S.K. Tin, Arch. Ration. Mech. Anal. 143, 105 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  25. W. Zhang, M.H. Yao, Int. J. Mod. Phys. B 22, 4089 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. W. Zhang, M.H. Yao, J.H. Zhang, J. Sound Vib. 319, 541 (2009).

    Article  ADS  Google Scholar 

  27. M.H. Yao, W. Zhang, J.W. Zu, J. Sound Vib. 331, 2624 (2012).

    Article  ADS  Google Scholar 

  28. J.H. Zhang, W. Zhang, M.H. Yao, X.Y. Guo, Int. J. Nonlinear Sci. Numer. Simulat. 9, 381 (2008).

    Google Scholar 

  29. W. Zhang, J.H. Zhang, M.H. Yao, Nonlinear Anal. Real. 11, 1442 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  30. J.H. Zhang, W. Zhang, Sci. China-Phys. Mech. Astron. 55, 1679 (2012).

    Article  ADS  Google Scholar 

  31. W. Zhang, J.H. Zhang, M.H. Yao, Z.G. Yao, Acta Mech. 211, 23 (2010).

    Article  MATH  Google Scholar 

  32. W. Zhang, J.H. Zhang, Acta Mech. 223, 1047 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  33. W. Zhang, W.L. Hao, Nonlinear Dyn. 73, 1005 (2013).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, R., Wu, Q., Xiong, Y. et al. Bifurcations and chaotic thresholds for the spring-pendulum oscillator with irrational and fractional nonlinear restoring forces. Eur. Phys. J. Plus 129, 85 (2014). https://doi.org/10.1140/epjp/i2014-14085-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14085-3

Keywords

Navigation