Skip to main content
Log in

Modeling the influence of the external electric fields on water viscosity inside carbon nanotubes

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Equilibrium molecular dynamics simulations were performed to explore the effects of external electric fields and confinement on water properties inside various carbon nanotubes (CNTs). Using different GHz electric field frequencies as well as various constant electric field strengths, the radial distribution function and density profile were investigated, by which the impact of the electric fields and confinement on the water structure are revealed. The results indicated water molecules inside the CNT form layered structures due to topological confinement applying external electric fields can disturb this ordered water molecules structure and increase the viscosity of confined water, particularly in the case of CNTs with a radius less than 13.5 Å. Conversely, for CNTs with a radius greater than13.5 Å, the viscosity decreases under the influence of external oscillating or constant electric fields.

Graphical abstract

How dose the synergism of confinement and external electric fields affect the water properties inside the CNTs?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z.S. Siwy, M. Davenport, Graphene opens up to DNA. Nat. Nanotechnol. 5, 697–698 (2010). https://doi.org/10.1038/nnano.2010.198

    Article  ADS  Google Scholar 

  2. S. Joseph, N.R. Aluru, Why are carbon nanotubes fast transporters of water? Nano Lett. 8(2), 452–458 (2008). https://doi.org/10.1021/nl072385q

    Article  ADS  Google Scholar 

  3. B. Corry, Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112(5), 1427–1434 (2008)

    Article  Google Scholar 

  4. M. Majumder, N. Chopra, B.J. Hinds, Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J. Am. Chem. Soc. 127(25), 9062–9070 (2005). https://doi.org/10.1021/ja043013b

    Article  Google Scholar 

  5. S. Joseph, R.J. Mashl, E. Jakobsson, N.R. Aluru, Electrolytic transport in modified carbon nanotubes. Nano Lett. 3(10), 1399–1403 (2003). https://doi.org/10.1021/nl0346326

    Article  ADS  Google Scholar 

  6. N. Bui, E.R. Meshot, S. Kim, J. Peña, P.W. Gibson, K.J. Wu, F. Fornasiero, Ultrabreathable and protective membranes with sub-5 nm carbon nanotube pores. Adv. Mater. 28(28), 5871–5877 (2016). https://doi.org/10.1002/adma.201600740

    Article  Google Scholar 

  7. A.M. Marconnet, M.A. Panzer, K.E. Goodson, Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev. Mod. Phys. 85(3), 1295 (2013). https://doi.org/10.1103/RevModPhys.85.1295

    Article  ADS  Google Scholar 

  8. B. Kumanek, D. Janas, Thermal conductivity of carbon nanotube networks: a review. J. Mater. Sci. 54, 7397–7427 (2019). https://doi.org/10.1007/s10853-019-03368-0

    Article  ADS  Google Scholar 

  9. V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, T.A. Arias, P.L. McEuen, A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004). https://doi.org/10.1038/nature02905

    Article  ADS  Google Scholar 

  10. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999). https://doi.org/10.1126/science.284.5418.1340

    Article  ADS  Google Scholar 

  11. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000). https://doi.org/10.1126/science.287.5453.622

    Article  ADS  Google Scholar 

  12. E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Chemical detection with a single-walled carbon nanotube capacitor. Science 307(5717), 1942–1945 (2005). https://doi.org/10.1126/science.1109128

    Article  ADS  Google Scholar 

  13. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004). https://doi.org/10.1126/science.1092048

    Article  ADS  Google Scholar 

  14. A. Lohrasebi, T. Koslowski, Modeling water purification by an aquaporin-inspired graphene-based nano-channel. J. Mol. Model. 25, 280 (2019). https://doi.org/10.1007/s00894-019-4160-y

    Article  Google Scholar 

  15. R. Wan, H. Lu, J. Li, J. Bao, J. Hu, H. Fang, Concerted orientation induced unidirectional water transport through nanochannels. Phys. Chem. Chem. Phys. 11(42), 9898–9902 (2009). https://doi.org/10.1039/B907926M

    Article  Google Scholar 

  16. J. Su, H. Guo, Effect of nanotube-length on the transport properties of single-file water molecules: transition from bidirectional to unidirectional. J. Chem. Phys. 134(24), 244513 (2011). https://doi.org/10.1063/1.3604531

    Article  ADS  Google Scholar 

  17. J. Su, H. Guo, Effect of nanochannel dimension on the transport of water molecules. J. Phys. Chem. B 116(20), 5925–5932 (2012). https://doi.org/10.1021/jp211650s

    Article  Google Scholar 

  18. M. Majumder, N. Chopra, R. Andrews, B. Hinds, Enhanced flow in carbon nanotubes. Nature 438, 44 (2005). https://doi.org/10.1038/438044a

    Article  ADS  Google Scholar 

  19. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776), 1034–1037 (2006). https://doi.org/10.1126/science.112629

    Article  ADS  Google Scholar 

  20. M. Kargar, A. Lohrasebi, Water flow modeling through a graphene-based nanochannel: theory and simulation. Phys. Chem. Chem. Phys. 21(6), 3304–3309 (2019). https://doi.org/10.1039/C8CP06839A

    Article  Google Scholar 

  21. M.E. Suk, N.R. Aluru, Modeling water flow through carbon nanotube membranes with entrance/exit effects. Nanoscale Microscale Thermophys. Eng. 21(4), 247–262 (2017). https://doi.org/10.1080/15567265.2017.1355949

    Article  ADS  Google Scholar 

  22. A. Striolo, The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett. 6(4), 633–639 (2006). https://doi.org/10.1021/nl052254u

    Article  ADS  Google Scholar 

  23. B. Mukherjee, P.K. Maiti, C. Dasgupta, A.K. Sood, Single-file diffusion of water inside narrow carbon nanorings. ACS Nano 4(2), 985–991 (2010). https://doi.org/10.1021/nn900858a

    Article  Google Scholar 

  24. X. Hu, N. Elghobashi-Meinhardt, D. Gembris, J.C. Smith, Response of water to electric fields at temperatures below the glass transition: a molecular dynamics analysis. J. Chem. Phys. 135(13), 134507 (2011). https://doi.org/10.1063/1.3643077

    Article  ADS  Google Scholar 

  25. W. Winarto, E. Yamamoto, K. Yasuoka, Water molecules in a carbon nanotube under an applied electric field at various temperatures and pressures. Water 9(7), 473 (2017). https://doi.org/10.3390/w9070473

    Article  Google Scholar 

  26. M. Kargar, A. Lohrasebi, Modeling the effect of external electric fields on the dynamics of a confined water nano-droplet. J. Nano Res. 67, 89–96 (2021). https://doi.org/10.4028/www.scientific.net/JNanoR.67.89

    Article  Google Scholar 

  27. R. Zangi, A.E. Mark, Electrofreezing of confined water. J. Chem. Phys. 120(15), 7123–7130 (2004). https://doi.org/10.1063/1.1687315

    Article  ADS  Google Scholar 

  28. L. Figueras, J. Faraudo, Competition between hydrogen bonding and electric field in single-file transport of water in carbon nanotubes. Mol. Simul. 38(1), 23–25 (2012). https://doi.org/10.1080/08927022.2011.599032

    Article  Google Scholar 

  29. H. Qiu, W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110(19), 195701 (2013). https://doi.org/10.1103/PhysRevLett.110.195701

    Article  ADS  Google Scholar 

  30. Y. He, G. Sun, K. Koga, L. Xu, Electrostatic field-exposed water in nanotube at constant axial pressure. Sci. Rep. 4, 6596 (2014). https://doi.org/10.1038/srep06596

    Article  ADS  Google Scholar 

  31. M. Kargar, A. Lohrasebi, Deformation of water nano-droplets on graphene under the influence of constant and alternative electric fields. Phys. Chem. Chem. Phys. 19(39), 26833–26838 (2017). https://doi.org/10.1039/C7CP04433J

    Article  Google Scholar 

  32. M. Neek-Amal, F.M. Peeters, I.V. Grigorieva, A.K. Geim, Commensurability effects in viscosity of nanoconfined water. ACS Nano 10(3), 3685–3692 (2016). https://doi.org/10.1021/acsnano.6b00187

    Article  Google Scholar 

  33. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  34. J.L.F. Abascal, C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123(23), 234505 (2005). https://doi.org/10.1063/1.2121687

    Article  ADS  Google Scholar 

  35. M.A. González, J.L.F. Abascal, The shear viscosity of rigid water models. J. Chem. Phys. 132(9), 096101 (2010). https://doi.org/10.1063/1.3330544

    Article  ADS  Google Scholar 

  36. M. Suk, N. Aluru, Molecular and continuum hydrodynamics in graphene nanopores. RSC Adv. 3(24), 9365–9372 (2013). https://doi.org/10.1039/C3RA40661J

    Article  ADS  Google Scholar 

  37. B. Hess, Determining the shear viscosity of model liquids from molecular dynamics simulations. J. Chem. Phys. 116(1), 209–217 (2002). https://doi.org/10.1063/1.1421362

    Article  ADS  MathSciNet  Google Scholar 

  38. G.-J. Guo, Y.-G. Zhang, Equilibrium molecular dynamics calculation of the bulk viscosity of liquid water. Mol. Phys. 99(4), 283–289 (2001). https://doi.org/10.1080/00268970010011762

    Article  ADS  Google Scholar 

  39. D. Alfè, M.J. Gillan, First-principles calculation of transport coefficients. Phys. Rev. Lett. 81(23), 5161 (1998). https://doi.org/10.1103/PhysRevLett.81.5161

    Article  ADS  Google Scholar 

  40. G.S. Fanourgakis, J.S. Medina, R. Prosmiti, Determining the bulk viscosity of rigid water models. J. Phys. Chem. A 116(10), 2564–2570 (2012). https://doi.org/10.1021/jp211952y

    Article  Google Scholar 

  41. K.R. Harris, L.A. Woolf, Temperature and volume dependence of the viscosity of water and heavy water at low temperatures. J. Chem. Eng. Data 49(4), 1064–1069 (2004). https://doi.org/10.1021/je049918m

    Article  Google Scholar 

  42. J.A. Thomas, A.J.H. McGaughey, Reassessing fast water transport through carbon nanotubes. Nano Lett. 8(9), 2788–2793 (2008). https://doi.org/10.1021/nl8013617

    Article  ADS  Google Scholar 

  43. L. Wang, R.S. Dumont, J.M. Dickson, Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure. J. Chem. Phys. 137(4), 044102 (2012). https://doi.org/10.1063/1.4734484

    Article  ADS  Google Scholar 

  44. J.A. Thomas, A.J.H. McGaughey, Density, distribution, and orientation of water molecules inside and outside carbon nanotubes. Chem. Phys. 128(8), 084715 (2008). https://doi.org/10.1063/1.2837297

    Article  ADS  Google Scholar 

  45. M. Abbaspour, H. Akbarzadeh, S. Salemi, L. Bahmanipour, Phase transitions in nanostructured water confined in carbon nanotubes by external electric and magnetic fields: a molecular dynamics investigation. RSC Adv. 11, 10532–10539 (2021). https://doi.org/10.1039/D0RA09135A

    Article  ADS  Google Scholar 

  46. D. Zong, H. Hu, Y. Duan, Y. Sun, Viscosity of water under electric field: anisotropy induced by redistribution of hydrogen bonds. J. Phys. Chem. B 120(21), 4818–4827 (2016). https://doi.org/10.1021/acs.jpcb.6b01686

    Article  Google Scholar 

  47. A. Alexiadis, S. Kassinos, Self-diffusivity, hydrogen bonding and density of different water models in carbon nanotubes. Mol. Simul. 34(7), 671–678 (2008). https://doi.org/10.1080/08927020802073057

    Article  Google Scholar 

  48. A.B. Farimani, N. Aluru, Spatial diffusion of water in carbon nanotubes: from fickian to ballistic motion. J. Phys. Chem. B 115(42), 12145–12149 (2011). https://doi.org/10.1021/jp205877b

    Article  Google Scholar 

  49. A. Srivastava, J. Hassan, D. Homouz, Hydrogen bond dynamics and phase transitions of water inside carbon nanotubes. Nanomaterials 13(2), 284 (2023). https://doi.org/10.3390/nano13020284

    Article  Google Scholar 

  50. R. Mills, Self-diffusion in normal and heavy water in the range 1–45.deg. J. Phys. Chem. 77(5), 685–688 (1973). https://doi.org/10.1021/j100624a025

    Article  Google Scholar 

Download references

Funding

There is no significant financial support for this work.

Author information

Authors and Affiliations

Authors

Contributions

MF (50%), AL (50%).

Corresponding author

Correspondence to Amir Lohrasebi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Ethics approval statement

We the undersigned declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 489 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrokhbin, M., Lohrasebi, A. Modeling the influence of the external electric fields on water viscosity inside carbon nanotubes. Eur. Phys. J. E 46, 93 (2023). https://doi.org/10.1140/epje/s10189-023-00357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00357-9

Navigation