Skip to main content
Log in

Marangoni convection in a hybrid nanofluid-filled cylindrical annular enclosure with sinusoidal temperature distribution

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The current research numerically investigates the Marangoni convection in a cylindrical annulus filled with hybrid nanofluid saturated porous media. The interior and exterior walls are subjected to spatially varying sinusoidal thermal distributions with various amplitude ratios and phase deviations. The limits at the top and bottom are adiabatic. To solve the system of non-dimensional governing equations, the finite difference approach is applied. The main objective of the ongoing study is to investigate the impact of the Marangoni number, nanoparticle volume fraction and the radii ratio on the amplitude ratio and phase deviation. Also, the fluid flow, thermal characteristics, local and average Nusselt numbers are analysed in the hybrid nanofluid-filled vertical cylindrical annulus with magnetic effects. The findings indicate that the sinusoidal temperature promotes multicellular flow in the porous annular region. In the annulus with sinusoidal boundaries, the Marangoni number underperforms while the nanoparticle volume fraction outperforms.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

No data associated in the manuscript.

Abbreviations

A :

Aspect ratio (L/D)

\(A_\textrm{l}\) :

Amplitude at left wall (m)

\(A_\textrm{r}\) :

Amplitude at right wall (m)

\(B_{0}\) :

Magnetic field strength

D :

annulus gap (m)

Da:

Darcy number

g :

Gravitational acceleration \((\textrm{m}/\textrm{s}^{2})\)

\(h_{\textrm{nl}}\) :

Thickness of nanolayer

Ha:

Hartmann number

k :

Thermal conductivity \((\textrm{W}/\textrm{mk})\)

K :

Permeability of the porous medium \((\textrm{m}^2)\)

L :

Height of the annulus (m)

Ma:

Marangoni number

Nu:

Nusselt number

p :

Pressure \((\textrm{N}/\textrm{m}^{2})\)

Pr:

Prandtl number

rx :

Dimensional coordinates

RX :

Dimensionless coordinates

\(r_{\textrm{p}}\) :

Radius of nanoparticles (nm)

\(r_{0}\) :

Radius of the outer cylinder (m)

\(r_{\textrm{i}}\) :

Radius of the inner cylinder (m)

Ra:

Rayleigh number

\(T_{\textrm{l}}, T_{\textrm{r}}\) :

Dimensional temperature at left and right walls

UV :

Dimensionless velocity components

uv :

Dimensional velocity components (m/s)

\(\alpha \) :

Thermal diffusivity \((\textrm{m}^2/\textrm{s})\)

\(\beta \) :

Thermal expansion coefficient \((\textrm{K}^{-1})\)

\(\epsilon \) :

Amplitude ratio

\(\delta \) :

Porosity of the porous medium \((\textrm{m}^2)\)

\(\eta \) :

Dimensionless vorticity

\(\gamma \) :

Phase deviation

\(\lambda \) :

Radii ratio \((r_{0}/r_{\textrm{i}})\)

\(\mu \) :

dynamic viscosity (kg/ms)

\(\nu \) :

kinematic viscosity \((\textrm{m}^2/\textrm{s})\)

\(\Omega \) :

Dimensional vorticity \((\textrm{s}^{-1})\)

\(\phi \) :

Solid volume fraction of nanoparticles

\(\psi \) :

Dimensional stream function \((\textrm{m}^2/\textrm{s}^{1})\)

\(\Psi \) :

Dimensionless stream function

\(\rho \) :

Density \((\textrm{kg}/\textrm{m}^{3})\)

\(\sigma \) :

Electrical conductivity \((\textrm{sm}^{-1})\)

\(\sigma ^{*}\) :

Surface tension parameter

\(\tau \) :

Time (s)

\(\theta _{\textrm{l}},\theta _{\textrm{r}}\) :

Dimensionless temperatures at left and right walls (K)

c:

Cold wall

f:

Properties associated with fluid

hnf:

Properties associated with hybrid nanofluid

l:

Left wall

r:

Right wall

References

  1. G.P. Sasmal, J.I. Hochstein, Marangoni convection with a curved and deforming free surface in a cavity. J. Fluids Eng. 116, 577–582 (1994)

    Article  Google Scholar 

  2. E. Chen, F. Xu, Transient thermocapillary convection flows in a rectangular cavity with an evenly heated lateral wall. Phys. Fluids 33, 013602 (2021)

    Article  ADS  Google Scholar 

  3. J.G. Zhang, Y. Okano, S. Dost, Numerical simulation of Marangoni convection in a shallow rectangular cavity with a linear solutal boundary condition. Int. J. Heat Mass Transf. 178, 121578 (2021)

    Article  Google Scholar 

  4. E. Bilgen, R.B. Yedder, Natural convection in enclosure with heating and cooling by sinusoidal temperature profiles on one side. Int. J. Heat Mass Transf. 50, 139–150 (2007)

    Article  MATH  Google Scholar 

  5. Q.-H. Deng, J.-J. Chang, Natural convection in a rectangular enclosure with sinusoidal temperature distributions on both side walls. Numer. Heat Transf. A: Appl. 54, 507–524 (2008)

    Article  ADS  Google Scholar 

  6. M. Muthtamilselvan, S. Sureshkumar, D. H. Doh, Coupled free and forced convection heat transfer in a porous enclosure saturated by nanofluid with irregular temperature distributions on sidewalls. Int. J. Chem. React. Eng. 15, (2017)

  7. M. Sankar, S. Kiran, Y. Do, Effect of Nonuniform Heating on Natural Convection in a Vertical Porous Annulus’’ (Springer, Singapore, 2018), pp.251–278

    Google Scholar 

  8. M.H. Hendy, S.I. El-Attar, Stability of magnetohydrodynamic heat transfer free convection of vertical surface with OHMIC heating by radiation and viscous dissipation. Waves Random Complex Media 31, 57–71 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Du, P. Gokulavani, M. Muthtamilselvan, F. Al-Amri, B. Abdalla, Influence of the Lorentz force on the ventilation cavity having a centrally placed heated baffle filled with the Cu–Al\(_2\)O\(_3\)–H\(_2\)O hybrid nanofluid. Int. Commun. Heat Mass Transfer 116, 104676 (2020)

    Article  Google Scholar 

  10. G.R. Kefayati, Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution. Powder Technol. 243, 171–183 (2013)

    Article  Google Scholar 

  11. M. Afrand, A.H. Pordanjani, S. Aghakhani, H.F. Oztop, N. Abu-Hamdeh, Free convection and entropy generation of a nanofluid in a tilted triangular cavity exposed to a magnetic field with sinusoidal wall temperature distribution considering radiation effects. Int. Commun. Heat Mass Transfer 112, 104507 (2020)

    Article  Google Scholar 

  12. O. Ghaffarpasand, Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with Fe3O4-water nanofluid in the presence of Joule heating. Appl. Math. Model. 40, 9165–9182 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. A.H. Pordanjani, A. Jahanbakhshi, A. Ahmadi Nadooshan, M. Afrand, Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int. J. Heat Mass Transfer 121, 565–578 (2018)

    Article  Google Scholar 

  14. M.A. Sheremet, I. Pop, Natural convection in a square porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s Mathematical Model. Transp. Porous Media 105, 411–429 (2014)

    Article  MathSciNet  Google Scholar 

  15. M. Bouhalleb, H. Abbassi, Natural convection in an inclined rectangular enclosure filled by CUO–H\(_2\)O nanofluid, with sinusoidal temperature distribution. Int. J. Hydrogen Energy 40, 13676–13684 (2015)

    Article  Google Scholar 

  16. L. Wang, C. Huang, X. Yang, Z. Chai, B. Shi, Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution. Int. J. Heat Mass Transf. 128, 688–699 (2019)

    Article  Google Scholar 

  17. R. Mashayekhi, E. Khodabandeh, O.A. Akbari, D. Toghraie, M. Bahiraei, M. Gholami, CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. J. Therm. Anal. Calorim. 134, 2305–2315 (2018)

    Article  Google Scholar 

  18. N. Biswas, U.K. Sarkar, A.J. Chamkha, N.K. Manna, Magneto-hydrodynamic thermal convection of Cu-Al2O3/water hybrid nanofluid saturated with porous media subjected to half-sinusoidal nonuniform heating. J. Therm. Anal. Calorim. 143, 1727–1753 (2021)

    Article  Google Scholar 

  19. J. Shaik, B.A.R. Polu, M. Mohamed Ahmed, R. Ahmed Mohamed, Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid. Eur. Phys. J. Plus 137, 131 (2022)

    Article  Google Scholar 

  20. A.I. Alsabery, H.T. Kadhim, M.A. Ismael, I. Hashim, A.J. Chamkha, Impacts of amplitude and heat source on natural convection of hybrid nanofluids into a wavy enclosure via heatline approach. Waves Random Complex Media, pp. 1–25 (2021)

  21. H. Liu, S. Ahmad, J. Chen, J. Zhao, Molecular dynamics study of the nanoscale boiling heat transfer process on nanostructured surfaces. Int. Commun. Heat Mass Transfer 119, 104963 (2020)

    Article  Google Scholar 

  22. H. Belmabrouk, H. Rezgui, F. Nasri, M.F.B. Aissa, A.A. Guizani, Interfacial heat transport across multilayer nanofilms in ballistic-diffusive regime. Eur. Phys. J. Plus 135, 109 (2020)

    Article  Google Scholar 

  23. M. Sankar, M. Venkatachalappa, Y. Do, Effect of magnetic field on the buoyancy and thermocapillary driven convection of an electrically conducting fluid in an annular enclosure. Int. J. Heat Fluid Flow 32, 402–412 (2011)

    Article  Google Scholar 

  24. B. Kanimozhi, M. Muthtamilselvan, Q.M. Al-Mdallal, B. Abdalla, Double-diffusive buoyancy and Marangoni convection in a hybrid nanofluid filled cylindrical porous annulus. Microgravity Sci. Technol. 34, 17 (2022)

    Article  ADS  Google Scholar 

  25. J.O. Wilkes, S.W. Churchill, The finite-difference computation of natural convection in a rectangular enclosure. AIChE J. 12, 161–166 (1966)

    Article  Google Scholar 

  26. G. De Vahl Davis, Natural convection of air in a square cavity: A bench mark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

    Article  MATH  Google Scholar 

  27. I. Tlili, H.A. Nabwey, S.P. Samrat, N. Sandeep, 3D MHD nonlinear radiative flow of CuO-MgO/methanol hybrid nanofluid beyond an irregular dimension surface with slip effect. Sci. Rep. 10, 9181 (2020)

  28. M. Benzema, Y.K. Benkahla, N. Labsi, S.-E. Ouyahia, M. El Ganaoui, Second law analysis of MHD mixed convection heat transfer in a vented irregular cavity filled with Ag-MgO/water hybrid nanofluid. J. Therm. Anal. Calorim. 137, 1113–1132 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to M. Muthtamilselvan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanimozhi, B., Muthtamilselvan, M. & Al-Mdallal, Q. Marangoni convection in a hybrid nanofluid-filled cylindrical annular enclosure with sinusoidal temperature distribution. Eur. Phys. J. E 46, 1 (2023). https://doi.org/10.1140/epje/s10189-022-00253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00253-8

Navigation