Skip to main content
Log in

Microfluidic device coupled with total internal reflection microscopy for in situ observation of precipitation

  • Tips and Tricks - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In situ observation of precipitation or phase separation induced by solvent addition is important in studying its dynamics. Combined with optical and fluorescence microscopy, microfluidic devices have been leveraged in studying the phase separation in various materials including biominerals, nanoparticles, and inorganic crystals. However, strong scattering from the subphases in the mixture is problematic for in situ study of phase separation with high temporal and spatial resolution. In this work, we present a quasi-2D microfluidic device combined with total internal reflection microscopy as an approach for in situ observation of phase separation. The quasi-2D microfluidic device comprises of a shallow main channel and a deep side channel. Mixing between a solution in the main channel (solution A) and another solution (solution B) in the side channel is predominantly driven by diffusion due to high fluid resistance from the shallow height of the main channel, which is confirmed using fluorescence microscopy. Moreover, relying on diffusive mixing, we can control the composition of the mixture in the main channel by tuning the composition of solution B. We demonstrate the application of our method for in situ observation of asphaltene precipitation and \(\beta \)-alanine crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Wang, W. Lu, Q. Yang, S. Li, X. Yu, J. Qiu, X. Xu, S.F. Yu, J. Phys. Chem. C 124, 15533–15540 (2020)

    Article  Google Scholar 

  2. M. Harada, Y. Kamigaito, Langmuir 28, 2415–2428 (2012)

    Article  Google Scholar 

  3. W. Xuan, H. Wang, D. Xia, Fuel 251, 242–248 (2019)

    Article  Google Scholar 

  4. A.E.S. Van Driessche, J.M. García-Ruiz, J.M. Delgado-López, G. Sazaki, Cryst. Growth Des. 10, 3909–3916 (2010)

    Article  Google Scholar 

  5. Y.-W. Wang, Y.-Y. Kim, C.J. Stephens, F.C. Meldrum, H.K. Christenson, Cryst. Growth Des. 12, 1212–1217 (2012)

    Article  Google Scholar 

  6. Y. Xu, Energy Fuels 32, 2801–2810 (2018)

    Article  Google Scholar 

  7. X. Gong, Y. Wang, J. Ihli, Y. Kim, S. Li, R. Walshaw, L. Chen, F.C. Meldrum, Adv. Mater. 27, 7395–7400 (2015)

    Article  Google Scholar 

  8. Y.-Y. Kim, C.L. Freeman, X. Gong, M.A. Levenstein, Y. Wang, A. Kulak, C. Anduix-Canto, P.A. Lee, S. Li, L. Chen, H.K. Christenson, F.C. Meldrum, Angew. Chemie. Int. Ed. 56, 11885–11890 (2017)

    Article  Google Scholar 

  9. R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-Manu, R. Langer, O.C. Farokhzad, Nano Lett. 8, 2906–2912 (2008)

    Article  ADS  Google Scholar 

  10. I.V. Zhigaltsev, N. Belliveau, I. Hafez, A.K.K. Leung, J. Huft, C. Hansen, P.R. Cullis, Langmuir 28, 3633–3640 (2012)

    Article  Google Scholar 

  11. X. Zhang, Z. Lu, H. Tan, L. Bao, Y. He, C. Sun, D. Lohse, Proc. Natl. Acad. Sci. 112, 9253–9257 (2015)

    Article  ADS  Google Scholar 

  12. K. Sekine, A. Okamoto, K. Hayashi, Am. Mineral. 96, 1012–1019 (2011)

    Article  ADS  Google Scholar 

  13. S. Desportes, Z. Yatabe, S. Baumlin, V. Génot, J.-P. Lefévre, H. Ushiki, J.A. Delaire, R.B. Pansu, Chem. Phys. Lett. 446, 1–3 (2007)

    Article  Google Scholar 

  14. B. Dyett, A. Kiyama, M. Rump, Y. Tagawa, D. Lohse, X. Zhang, Soft Matter 14, 5197–5204 (2018)

    Article  ADS  Google Scholar 

  15. B.P. Dyett, X. Zhang, ACS Nano 14, 10944–10953 (2020)

    Article  Google Scholar 

  16. Z. Lu, M.H.K. Schaarsberg, X. Zhu, L.Y. Yeo, D. Lohse, X. Zhang, Proc. Natl. Acad. Sci. 114, 10332–10337 (2017)

    Article  ADS  Google Scholar 

  17. K.N. Lish, Curr. Protoc. Cytom. 50, 12–18 (2009)

    Google Scholar 

  18. J.S. Buckley, G.J. Hirasaki, Y. Liu, S. Von Drasek, J. Wang, B.S. Gill, Pet. Sci. Technol. 16, 251–285 (1998)

    Article  Google Scholar 

  19. P. Wattana, D.J. Wojciechowski, G. Bolaños, H.S. Fogler, Pet. Sci. Technol. 21, 591–613 (2003)

    Article  Google Scholar 

  20. S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, Opt. Mater. Express 2, 1588–1611 (2012)

    Article  ADS  Google Scholar 

  21. K. Kerl, H. Varchmin, J. Mol. Struct. 349, 257–260 (1995)

    Article  ADS  Google Scholar 

  22. X. Zhang, J.B. You, G.F. Arends, J. Qian, Y. Chen, D. Lohse, J.M. Shaw, arXiv:2012.14450. [cond-mat.soft]

Download references

Acknowledgements

This work is supported by the Institute for Oil Sands Innovation (IOSI) (project number IOSI 2018-03) and from the Natural Science and Engineering Research Council of Canada (NSERC)—Collaborative Research and Development Grants. The authors are grateful for technical support from IOSI lab, particularly from Lisa Brandt and Brittany MacKinnon. We are also grateful for the technical support of Dr. Xuejun Sun at the Cell Imaging Facility at the Cross-Cancer Institute and Dr. Murray R. Gray in Alberta Innovates for fruitful discussion.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Xuehua Zhang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2413 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., You, J.B., Arends, G.F. et al. Microfluidic device coupled with total internal reflection microscopy for in situ observation of precipitation. Eur. Phys. J. E 44, 57 (2021). https://doi.org/10.1140/epje/s10189-021-00066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00066-1

Navigation