Skip to main content
Log in

Conservation-Dissipation Formalism for soft matter physics: II. Application to non-isothermal nematic liquid crystals

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

For most existing non-equilibrium theories, the modeling of non-isothermal processes is a hard task. Intrinsic difficulties involve the non-equilibrium temperature, the coexistence of conserved energy and dissipative entropy, etc. In this paper, by taking the non-isothermal flow of nematic liquid crystals as a typical example, we illustrate that thermodynamically consistent models in either vectorial or tensorial forms can be constructed within the framework of the Conservation-Dissipation Formalism (CDF). And the classical isothermal Ericksen-Leslie model and Qian-Sheng model are shown to be special cases of our new vectorial and tensorial models in the isothermal, incompressible and stationary limit. Most importantly, from the above examples, it is known that CDF can easily solve the issues relating with non-isothermal situations in a systematic way. The first and second laws of thermodynamics are satisfied simultaneously. The non-equilibrium temperature is defined self-consistently as a partial derivative of the entropy function. Relaxation-type constitutive relations are constructed, which give rise to classical linear constitutive relations, like Newton's law and Fourier's law, in stationary limits. Therefore, CDF is expected to have a broad scope of applications in soft matter physics, especially under complicated situations, such as non-isothermal, compressible and nanoscale systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1995)

  2. J. Han, Y. Luo, W. Wang, P. Zhang, Z. Zhang, Arch. Ration. Mech. Anal. 215, 741 (2015)

    Article  MathSciNet  Google Scholar 

  3. W. Wang, P. Zhang, Z. Zhang, SIAM J. Math. Anal. 47, 127 (2015)

    Article  MathSciNet  Google Scholar 

  4. J.L. Ericksen, Arch. Ration. Mech. Anal. 9, 371 (1962)

    Article  Google Scholar 

  5. F.M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968)

    Article  Google Scholar 

  6. F.M. Leslie, Adv. Liq. Cryst. 4, 1 (1979)

    Article  Google Scholar 

  7. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1992)

  8. F.-H. Lin, C. Liu, Commun. Pure Appl. Math. 48, 501 (1995)

    Article  Google Scholar 

  9. F.-H. Lin, C. Liu, Arch. Ration. Mech. Anal. 154, 135 (2000)

    Article  MathSciNet  Google Scholar 

  10. H. Sun, C. Liu, Discrete Contin. Dyn. Syst. 23, 455 (2008)

    Article  Google Scholar 

  11. L. Peng, Y. Hu, L. Hong, Eur. Phys. J. E 42, 73 (2019)

    Article  Google Scholar 

  12. F.-H. Lin, C. Liu, J. Partial Differ. Equ. 14, 289 (2001)

    Google Scholar 

  13. F.-H. Lin, C. Wang, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372, 20130361 (2014)

    Article  ADS  Google Scholar 

  14. M. Hieber, J. Prüss, Thermodynamical Consistent Modeling and Analysis of Nematic Liquid Crystal Flows, Vol. 183, Mathematical Fluid Dynamics, Present and Future, Springer Proceedings in Mathematics and Statistics (Springer, Tokyo, 2016)

  15. M. Hieber, J. Prüss, Math. Ann. 369, 977 (2017)

    Article  MathSciNet  Google Scholar 

  16. E. Feireisl, E. Rocca, G. Schimperna, Nonlinearity 24, 243 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. F.D. Anna, C. Liu, Arch. Ration. Mech. Anal. 231, 637 (2019)

    Article  MathSciNet  Google Scholar 

  18. F. Gay-Balmaz, C. Tronci, Proc. Math. Phys. Eng. Sci. 467, 1197 (2011)

    Article  Google Scholar 

  19. A.N. Beris, B.J. Edwards, Thermodynamics of flowing systems: with internal microstructure (Oxford University Press on Demand, 1994)

  20. T. Qian, P. Sheng, Phys. Rev. E 58, 7475 (1998)

    Article  ADS  Google Scholar 

  21. E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu, Commun. Math. Sci. 12, 317 (2014)

    Article  MathSciNet  Google Scholar 

  22. E. Feireisl, G. Schimperna, E. Rocca, A. Zarnescu, Ann. Mat. Pura Appl. 194, 1269 (2015)

    Article  MathSciNet  Google Scholar 

  23. A.M. Sonnet, P.L. Maffettone, E.G. Virga, J. Non-Newton. Fluid Mech. 119, 51 (2004)

    Article  Google Scholar 

  24. I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction (Taylor and Francis, London and New York, 2004)

  25. P.J. Flory, Molecular theory of liquid crystals, in Liquid Crystal Polymers I. Advances in Polymer Science, edited by N.A. Platé, Vol. 59 (Springer, 1984)

  26. H.N.W. Lekkerkerker, P. Coulon, R.V.D. Haegen, R. Deblieck, J. Chem. Phys. 80, 3427 (1984)

    Article  ADS  Google Scholar 

  27. H. He, E.M. Sevick, D.R.M. Williams, J. Chem. Phys. 144, 2186 (2016)

    Google Scholar 

  28. D. Jou, J. Casas-Vázquez, G. Lebon, Extended Irreversible Thermodynamics (Springer, 1996)

  29. Y. Zhu, L. Hong, Z. Yang, W.-A. Yong, J. Non-Equilib. Thermodyn. 40, 67 (2015)

    Article  ADS  Google Scholar 

  30. M. Sun, D. Jou, J. Zhang, J. Non-Newton. Fluid Mech. 229, 96 (2016)

    Article  MathSciNet  Google Scholar 

  31. W. Muschik, Arch. Ration. Mech. Anal. 66, 379 (1977)

    Article  Google Scholar 

  32. J. Casas-Vázquez, D. Jou, Rep. Prog. Phys. 66, 1937 (2003)

    Article  ADS  Google Scholar 

  33. J.L. Ericksen, Trans. Soc. Rheol. 5, 23 (1961)

    Article  MathSciNet  Google Scholar 

  34. F.C. Frank, Discuss. Faraday Soc. 25, 19 (1958)

    Article  Google Scholar 

  35. J.M. Ball, Mol. Cryst. Liq. Cryst. 647, 1 (2017) https://doi.org/10.1080/15421406.2017.1289425

    Article  Google Scholar 

  36. G. Durand, L. Leger, F. Rondelez, M. Veyssie, Phys. Rev. Lett. 23, 1361 (1969)

    Article  Google Scholar 

  37. S. Lee, R.B. Meyer, J. Chem. Phys. 84, 3443 (1986)

    Article  ADS  Google Scholar 

  38. M.P. Allen, D. Frenkel, Phys. Rev. A 37, 1813 (1988)

    Article  ADS  Google Scholar 

  39. B.J. Edwards, J. Non-Newton. Fluid Mech. 36, 243 (1990)

    Article  Google Scholar 

  40. M. Grmela, J. Phys. Commun. 2, 032001 (2018)

    Article  Google Scholar 

  41. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland Publishing Company, Amsterdam, 1962)

  42. M. Doi, Soft Matter Physics (Oxford University Press, Oxford, 2013)

  43. M. Grmela, H.C. Öttinger, Phys. Rev. E 56, 6620 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  44. C.W. Oseen, Trans. Faraday Soc. 29, 883 (1933)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Hong.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

10189_2019_11839_MOESM1_ESM.pdf

Supplemental Material: A comprehensive derivation on the tensorial models for non-isothermal flows of nematic liquid crystals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Hu, Y. & Hong, L. Conservation-Dissipation Formalism for soft matter physics: II. Application to non-isothermal nematic liquid crystals. Eur. Phys. J. E 42, 74 (2019). https://doi.org/10.1140/epje/i2019-11839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11839-2

Keywords

Navigation