Skip to main content
Log in

Nonlinear regimes of Soret-driven convection of ternary fluid with fixed vertical heat flux at the boundaries

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Nonlinear regimes of the Soret-induced convection of a ternary mixture in a rectangular cavity with the vertical heat flux at the boundaries are studied numerically. Linear stability analysis performed earlier for a plane horizontal layer has shown that in a wide range of parameters the longwave instability is dominant. Nonlinear calculations performed in the present work for the parameter ranges where the monotonic longwave instability is dominant according to the linear stability analysis, show that at large supercriticalities the multi-vortex stationary flows could be realized. With the decrease of absolute value of the Rayleigh number Ra the series of flow structure transformations takes place. This transformation is accompanied by the decrease of a number of the vortices such that near the threshold the flow becomes two-vortex, i.e. the flow with maximum possible wavelength (minimum possible wave number) is realized. Thus, the nonlinear calculations confirm the conclusions of the linear stability analysis that the longwave instability is dominant. For the parameter ranges where according to the linear stability analysis the oscillatory longwave instability is dominant, the nonlinear calculations show that at small values of the net separation ratio the oscillatory regimes could be observed just in a narrow range of Ra close to the convection threshold and with the growth of net separation ratio the range of Ra where they can be observed is extended.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ryzhkov, Fluid Dyn. 48, 477 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  2. J.P. Larre, J.K. Platten, G. Chavepeyer, Int. J. Heat Mass Transfer 40, 545 (1997)

    Article  Google Scholar 

  3. I.I. Ryzhkov, V.M. Shevtsova, Phys. Fluids 21, 014102 (2009)

    Article  ADS  Google Scholar 

  4. T. Lyubimova, N. Zubova, Eur. Phys. J. E 38, 19 (2015)

    Article  Google Scholar 

  5. T.P. Lyubimova, N.A. Zubova, Micrograv. Sci. Technol. 26, 241 (2014)

    Article  ADS  Google Scholar 

  6. T. Lyubimova, N. Zubova, Int. J. Heat Mass Transfer. 106, 1134 (2017)

    Article  Google Scholar 

  7. T. Lyubimova, N. Zubova, V. Shevtsova, Micrograv. Sci. Technol. 31, 1 (2019)

    Article  ADS  Google Scholar 

  8. T. Lyubimova, N. Lobov, V. Shevtsova, Eur. Phys. J. E 41, 23 (2018)

    Article  Google Scholar 

  9. T. Lyubimova, N. Zubova, V. Shevtsova, Eur. Phys. J. E 40, 27 (2017)

    Article  Google Scholar 

  10. K. Ghorayeb, A. Firoozabadi, AIChE J. 46, 883 (2000)

    Article  Google Scholar 

  11. B. Haugen Kjetil, Abbas Firoozabadi, J. Phys. Chem. B 110, 17678 (2006)

    Article  Google Scholar 

  12. M.M. Bou-Ali, A. Ahadi, D. Alonso de Mezquia, Q. Galand, M. Gebhardt, O. Khlybov, W. Khler, M. Larraaga, J.C. Legros, T. Lyubimova, A. Mialdun, I. Ryzhkov, M.Z. Saghir, V. Shevtsova, S. Van Varenbergh, Eur. Phys. J. E 38, 113 (2015)

    Article  Google Scholar 

  13. O.A. Khlybov, I.I. Ryzhkov, T.P. Lyubimova, Eur. Phys. J. E 38, 29 (2015)

    Article  Google Scholar 

  14. A. Mialdun, I. Ryzhkov, O. Khlybov, T. Lyubimova, V. Shevtsova, J. Chem. Phys. 148, 044506 (2018)

    Article  ADS  Google Scholar 

  15. T. Triller, H. Bataller, M.M. Bou-Ali, M. Braibanti, F. Croccolo, J.M. Ezquerro, Q. Galand, J. Gavald, E. Lapeira, A. Lavern-Simavilla, T. Lyubimova, A. Mialdun, J.M.O. Zrate, J. Rodrguez, X. Ruiz, I.I. Ryzhkov, V. Shevtsova, S.V. Vaerenbergh, W. Khler, Micrograv. Sci. Technol. 30, 295 (2018)

    Article  ADS  Google Scholar 

  16. T. Janzen, J. Vrabec, Ind. Eng. Chem. Res. 57, 16508 (2018)

    Article  Google Scholar 

  17. E. Lapeira, M. Gebhardt, T. Triller, A. Mialdun, W. Khler, V. Shevtsova, M.M. Bou-Ali, J. Chem. Phys. 146, 094507 (2017)

    Article  ADS  Google Scholar 

  18. A. Mojtabi, B. Ouattara, D.A.S. Rees, M.C. Charrier-Mojtabi, Int. J. Heat Mass Transfer 126, 479 (2018)

    Article  Google Scholar 

  19. A.N. Mohammad, D.A.S. Rees, A. Mojtabi, Transp. Porous Media 117, 189 (2017)

    Article  MathSciNet  Google Scholar 

  20. T.P. Lyubimova, E.S. Sadilov, S.A. Prokopev, Eur. Phys. J. E 40, 15 (2017)

    Article  Google Scholar 

  21. I.I. Ryzhkov, Thermal Diffusion in Mixtures: Equations, Symmetries, Solutions and their Stability (Novosibirsk, Publishing house of SB RAS, 2014) p. 200

  22. Ye.L. Tarunin, Computational Experiment in Free Convection Problems: Tutorial (Irkutsk Univ. Press, Irkutsk, 1990) p. 228

  23. P.J. Roache, Computational Fluid Dynamics (Hermosa Publications, Albuquerque, 1972)

  24. D. Hurle, E. Jakeman, J. Fluid Mech. 47, 667 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Lyubimova.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubimova, T.P., Prokopev, S.A. Nonlinear regimes of Soret-driven convection of ternary fluid with fixed vertical heat flux at the boundaries. Eur. Phys. J. E 42, 76 (2019). https://doi.org/10.1140/epje/i2019-11837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11837-4

Keywords

Navigation