Skip to main content

Advertisement

Log in

On the inverse energy transfer in rotating turbulence

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Rotating turbulence is an example of a three-dimensional system in which an inverse cascade of energy, from the small to the large scales, can be formed. While usually understood as a byproduct of the typical bidimensionalization of rotating flows, the role of the three-dimensional modes is not completely comprehended yet. In order to shed light on this issue, we performed direct numerical simulations of rotating turbulence where the 2D modes falling in the plane perpendicular to rotation are removed from the dynamical evolution. Our results show that while the two-dimensional modes are key to the formation of a stationary inverse cascade, the three-dimensional degrees of freedom play a non-trivial role in bringing energy to the larger scales also. Furthermore, we show that this backwards transfer of energy is carried out by the homochiral channels of the three-dimensional modes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, New York, 1995)

  2. Pierre Sagaut, Claude Cambon, Homogeneous Turbulence Dynamics (Springer, 2018)

  3. Stephen B. Pope, Turbulent Flows (Cambridge University Press, 2000)

  4. P.A. Davidson, Turbulence in Rotating, Stratified and Electrically Conducting Fluids (Cambridge University Press, 2013)

  5. Robert H. Kraichnan, Phys. Fluids 10, 1417 (1967)

    Article  ADS  Google Scholar 

  6. Leslie M. Smith, Jeffrey R. Chasnov, Fabian Waleffe, Phys. Rev. Lett. 77, 2467 (1996)

    Article  ADS  Google Scholar 

  7. P.D. Mininni, A. Pouquet, Phys. Rev. E 79, 026304 (2009)

    Article  ADS  Google Scholar 

  8. P.D. Mininni, A. Alexakis, A. Pouquet, Phys. Fluids 21, 015108 (2009)

    Article  ADS  Google Scholar 

  9. G.D. Nastrom, K.S. Gage, W.H. Jasperson, Nature 310, 36 (1984)

    Article  ADS  Google Scholar 

  10. Antonio Celani, Stefano Musacchio, Dario Vincenzi, Phys. Rev. Lett. 104, 184506 (2010)

    Article  ADS  Google Scholar 

  11. Hussein Aluie, Matthew Hecht, Geoffrey K. Vallis, J. Phys. Oceanogr. 48, 225 (2017)

    Article  Google Scholar 

  12. Alexandros Alexakis, Pablo D. Mininni, Annick Pouquet, Astrophys. J. 640, 335 (2006)

    Article  ADS  Google Scholar 

  13. P.D. Mininni, Phys. Rev. E 76, 026316 (2007)

    Article  ADS  Google Scholar 

  14. Luca Biferale, Stefano Musacchio, Federico Toschi, Phys. Rev. Lett. 108, 164501 (2012)

    Article  ADS  Google Scholar 

  15. L. Biferale, S. Musacchio, F. Toschi, J. Fluid Mech. 730, 309 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Alexandros Alexakis, J. Fluid Mech. 812, 752 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. James Y.K. Cho, Kristen Menou, Bradley M.S. Hansen, Sara Seager, Astrophys. J. 675, 817 (2008)

    Article  ADS  Google Scholar 

  18. Thomas Le Reun, Benjamin Favier, Adrian J. Barker, Michael Le Bars, Phys. Rev. Lett. 119, 034502 (2017)

    Article  ADS  Google Scholar 

  19. Horia Dumitrescu, Vladimir Cardos, AIAA J. 42, 408 (2004)

    Article  ADS  Google Scholar 

  20. A. Sen, P.D. Mininni, D. Rosenberg, A. Pouquet, Phys. Rev. E 86, 036319 (2012)

    Article  ADS  Google Scholar 

  21. L. Biferale, F. Bonaccorso, I.M. Mazzitelli, M.A.T. van Hinsberg, A.S. Lanotte, S. Musacchio, P. Perlekar, F. Toschi, Phys. Rev. X 6, 041036 (2016)

    Google Scholar 

  22. E. Horne, P.D. Mininni, Phys. Rev. E 88, 013011 (2013)

    Article  ADS  Google Scholar 

  23. F. Moisy, C. Morize, M. Rabaud, J. Sommeria, J. Fluid Mech. 666, 5 (2011)

    Article  ADS  Google Scholar 

  24. C. Cambon, L. Jacquin, J. Fluid Mech. 202, 295 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Cambon, N.N. Mansour, F.S. Godeferd, J. Fluid Mech. 337, 303 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Nazarenko, Wave Turbulence, 1st edition (Springer, 2011)

  27. A.C. Newell, J. Fluid Mech. 35, 255 (1969)

    Article  ADS  Google Scholar 

  28. S. Galtier, Phys. Rev. E 68, 015301 (2003)

    Article  ADS  Google Scholar 

  29. Qiaoning Chen, Shiyi Chen, Gregory L. Eyink, Darryl D. Holm, J. Fluid Mech. 542, 139 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. E. Yarom, E. Sharon, Nat. Phys. 10, 510 (2014)

    Article  Google Scholar 

  31. A. Campagne, B. Gallet, F. Moisy, P.-P. Cortet, Phys. Rev. E 91, 043016 (2015)

    Article  ADS  Google Scholar 

  32. P. Clark di Leoni, P.J. Cobelli, P.D. Mininni, P. Dmitruk, W.H. Matthaeus, Phys. Fluids 26, 035106 (2014)

    Article  ADS  Google Scholar 

  33. P. Clark di Leoni, P.D. Mininni, M.E. Brachet, Phys. Rev. A 92, 063632 (2015)

    Article  ADS  Google Scholar 

  34. P. Clark di Leoni, P.D. Mininni, J. Fluid Mech. 809, 821 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. F. Waleffe, Phys. Fluids A 5, 677 (1993)

    Article  ADS  Google Scholar 

  36. Michele Buzzicotti, Hussein Aluie, Luca Biferale, Moritz Linkmann, Energy transfer in turbulence under rotation, arXiv preprint, arXiv:1711.07054, 2017

  37. L. Jacquin, O. Leuchter, C. Cambon, J. Mathieu, J. Fluid Mech. 220, 1 (1990)

    Article  ADS  Google Scholar 

  38. A. Alexakis, J. Fluid Mech. 769, 46 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. B. Gallet, J. Fluid Mech. 783, 412 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. E. Calzavarini, C.R. Doering, J.D. Gibbon, D. Lohse, A. Tanabe, F. Toschi, Phys. Rev. E 73, 035301 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  41. F. Bellet, F.S. Godeferd, J.F. Scott, C. Cambon, J. Fluid Mech. 562, 83 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  42. L.M. Smith, F. Waleffe, J. Fluid Mech. 451, 145 (2002)

    Article  ADS  Google Scholar 

  43. Leslie M. Smith, Youngsuk Lee, J. Fluid Mech. 535, 111 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  44. L. Biferale, M. Buzzicotti, M. Linkmann, Phys. Fluids 29, 111101 (2017)

    Article  ADS  Google Scholar 

  45. H.P. Greenspan, Theory of Rotating Fluids (CUP Archive, Cambridge, 1968)

  46. H.P. Greenspan, J. Fluid Mech. 36, 257 (1969)

    Article  ADS  Google Scholar 

  47. Pedro F. Embid, Andrew J. Majda, Geophys. Astrophys. Fluid Dyn. 87, 1 (1998)

    Article  ADS  Google Scholar 

  48. Leslie M. Smith, Fabian Waleffe, Phys. Fluids 11, 1608 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  49. Ganapati Sahoo, Luca Biferale, Fluid Dyn. Res. 50, 011420 (2018)

    Article  MathSciNet  Google Scholar 

  50. F. Waleffe, Phys. Fluids A: Fluid Dyn. 4, 350 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  51. Peter Constantin, Andrew Majda, Commun. Math. Phys. 115, 435 (1988)

    Article  ADS  Google Scholar 

  52. Julian F. Scott, J. Fluid Mech. 741, 316 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Buzzicotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzzicotti, M., Clark Di Leoni, P. & Biferale, L. On the inverse energy transfer in rotating turbulence. Eur. Phys. J. E 41, 131 (2018). https://doi.org/10.1140/epje/i2018-11742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11742-4

Keywords

Navigation