Skip to main content
Log in

Prediction of immiscible two-phase flow properties in a two-dimensional Berea sandstone using the pore-scale lattice Boltzmann simulation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Immiscible two-phase flow in porous media is commonly encountered in industrial processes and environmental issues, such as enhanced oil recovery and the migration of fluids in an unsaturated zone. To deepen the current understanding of its underlying mechanism, this work focuses on the factors that influence the relative permeability and specific interfacial length of a two-phase flow in porous media, i.e., fluid saturation, viscosity ratio and contact angle. The lattice Boltzmann color-gradient model is adopted for pore-scale investigations, and the main findings are obtained as follows. Firstly, the relative permeability of each fluid increases as its saturation increases. The specific interfacial length first increases and then decreases as the saturation of the wetting fluid increases, and reaches a maximum when the permeabilities of both fluids are equal. Secondly, as the viscosity ratio of wetting to non-wetting fluids increases, the relative permeability of the wetting fluid will increase while that of the non-wetting fluid will decrease. The specific interfacial length will increase with increasing the viscosity difference between fluids. Finally, as the contact angle (measured from the wetting fluid) increases, the relative permeability of the wetting fluid overall increases while that of the non-wetting fluid decreases. Increasing contact angle always leads to a decrease in the specific interfacial length.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Å. Haugen et al., Energy Fuels 24, 3020 (2010)

    Article  Google Scholar 

  2. A. Muggeridge et al., Philos. Trans. 372, 20120320 (2014)

    Article  ADS  Google Scholar 

  3. S. Bachu, J.J. Adams, Energy Convers. Manag. 44, 3151 (2003)

    Article  Google Scholar 

  4. K. Pruess, Int. J. Greenh. Gas Control 2, 37 (2008)

    Article  Google Scholar 

  5. D.E. Williams, D.G. Wilder, Groundwater 9, 50 (1971)

    Article  Google Scholar 

  6. T.L. Holzer, Groundwater 14, 138 (1976)

    Article  Google Scholar 

  7. H. Liu et al., Trans. Porous Media 99, 555 (2013)

    Article  ADS  Google Scholar 

  8. H. Liu, Y. Zhang, A.J. Valocchi, Phys. Fluids 27, 052103 (2015)

    Article  ADS  Google Scholar 

  9. B. Levaché, D. Bartolo, Phys. Rev. Lett. 113, 044501 (2014)

    Article  ADS  Google Scholar 

  10. R. Wu, A. Kharaghani, E. Tsotsas, Chem. Eng. Sci. 139, 241 (2016)

    Article  Google Scholar 

  11. C. Zhang et al., Acta Ophthalmol. 25, 3493 (2011)

    Google Scholar 

  12. K. Singh et al., Sci. Rep. 7, 5192 (2017)

    Article  ADS  Google Scholar 

  13. Y. Chen et al., J. Contam. Hydrol. 212, 14 (2017)

    Article  ADS  Google Scholar 

  14. H. Li, C. Pan, C.T. Miller, Phys. Rev. E 72, 026705 (2005)

    Article  ADS  Google Scholar 

  15. H. Huang, X. Lu, Phys. Fluids 21, 092104 (2009)

    Article  ADS  Google Scholar 

  16. M. Erpelding et al., Phys. Rev. E 88, 053004 (2013)

    Article  ADS  Google Scholar 

  17. E.B. Janetti, M. Riva, A. Guadagnini, Water 9, 252 (2017)

    Article  Google Scholar 

  18. M. Ahmadlouydarab, Z.S. Liu, J.J. Feng, Int. J. Multiphase Flow 47, 85 (2012)

    Article  Google Scholar 

  19. Z. Li et al., Adv. Water Resour. 116, 153 (2018)

    Article  ADS  Google Scholar 

  20. A.Q. Raeini, M.J. Blunt, B. Bijeljic, Adv. Water Resour. 74, 116 (2014)

    Article  ADS  Google Scholar 

  21. E. Jettestuen et al., Water Resour. Res. 49, 4645 (2013)

    Article  ADS  Google Scholar 

  22. A.M. Tartakovsky, P. Meakin, Adv. Water Resour. 29, 1464 (2006)

    Article  ADS  Google Scholar 

  23. M.S. Algharbi, M.J. Blunt, Phys. Rev. E 71, 016308 (2005)

    Article  ADS  Google Scholar 

  24. L. Scarbolo et al., J. Comput. Phys. 234, 263 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. X. He, L.S. Luo, Phys. Rev. E 55, R6333 (1997)

    Article  ADS  Google Scholar 

  26. H. Liu et al., Comput. Geosci. 20, 777 (2016)

    Article  MathSciNet  Google Scholar 

  27. S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998)

    Article  ADS  Google Scholar 

  28. C. Pan, M. Hilpert, C.T. Miller, Water Resour. Res. 40, 62 (2004)

    Google Scholar 

  29. C.K. Aidun, J.R. Clausen, Annu. Rev. Fluid Mech. 42, 439 (2010)

    Article  ADS  Google Scholar 

  30. J. Zhang, Microfluid. Nanofluid. 10, 1 (2011)

    Article  Google Scholar 

  31. S. Leclaire et al., Phys. Rev. E 95, 033306 (2017)

    Article  ADS  Google Scholar 

  32. A.K. Gunstensen et al., Phys. Rev. A 43, 4320 (1991)

    Article  ADS  Google Scholar 

  33. T. Reis, T.N. Phillips, J. Phys. A: Math. Theor. 40, 4033 (2007)

    Article  ADS  Google Scholar 

  34. B. Ahrenholz et al., Adv. Water Resour. 31, 1151 (2008)

    Article  ADS  Google Scholar 

  35. H. Liu, A.J. Valocchi, Q. Kang, Phys. Rev. E 85, 046309 (2012)

    Article  ADS  Google Scholar 

  36. X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)

    Article  ADS  Google Scholar 

  37. X. Shan, H. Chen, Phys. Rev. E 49, 2941 (1994)

    Article  ADS  Google Scholar 

  38. X. Shan, G. Doolen, J. Stat. Phys. 81, 379 (1995)

    Article  ADS  Google Scholar 

  39. Q. Kang, D. Zhang, S. Chen, Phys. Fluids 14, 3203 (2002)

    Article  ADS  Google Scholar 

  40. C.J. Landry, Z.T. Karpyn, O. Ayala, Water Resour. Res. 50, 3672 (2014)

    Article  ADS  Google Scholar 

  41. M.R. Swift, W.R. Osborn, J.M. Yeomans, Phys. Rev. Lett. 75, 830 (1995)

    Article  ADS  Google Scholar 

  42. M.R. Swift et al., Phys. Rev. E. 54, 5041 (1996)

    Article  ADS  Google Scholar 

  43. H. Liang, P. Cheng, Int. J. Heat Mass Transfer 53, 1908 (2010)

    Article  Google Scholar 

  44. H. Liu et al., Phys. Rev. E 87, 013010 (2013)

    Article  ADS  Google Scholar 

  45. A. Fakhari et al., Adv. Water Resour. 114, 119 (2018)

    Article  ADS  Google Scholar 

  46. X. He, S. Chen, R. Zhang, J. Comput. Phys. 152, 642 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  47. J. Zhang, B. Li, D.Y. Kwok, Phys. Rev. E 69, 032602 (2004)

    Article  ADS  Google Scholar 

  48. J. Zhang, D.Y. Kwok, J. Colloid Interface Sci. 282, 434 (2005)

    Article  ADS  Google Scholar 

  49. H. Huang, M.C. Sukop, X. Lu, Multiphase Lattice Boltzmann Methods: Theory and Application (John Wiley & Sons, 2015)

  50. H. Huang, L. Wang, X. Lu, Comput. Math. Appl. 61, 3606 (2011)

    Article  MathSciNet  Google Scholar 

  51. J. Tölke et al., Philos. Trans. 360, 535 (2002)

    Article  ADS  Google Scholar 

  52. A.L. Dye et al., Water Resour. Res. 52, 2601 (2016)

    Article  ADS  Google Scholar 

  53. Y. Ba et al., Phys. Rev. E 94, 023310 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  54. N. Wang, H. Liu, C. Zhang, J. Rheol. 61, 741 (2017)

    Article  ADS  Google Scholar 

  55. Y. Yu et al., Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 232, 416 (2018)

    Article  Google Scholar 

  56. Z. Xu, H. Liu, A.J. Valocchi, Water Resour. Res. 53, 3770 (2017)

    Article  ADS  Google Scholar 

  57. T. Akai, B. Bijeljic, M.J. Blunt, Adv. Water Resour. 116, 56 (2018)

    Article  ADS  Google Scholar 

  58. H. Huang, J.J. Huang, X.Y. Lu, Comput. Fluids 93, 164 (2014)

    Article  MathSciNet  Google Scholar 

  59. J. Zhao et al., Water Resour. Res. 54, 1295 (2018)

    Article  ADS  Google Scholar 

  60. H. Liu et al., Adv. Water Resour. 73, 144 (2014)

    Article  ADS  Google Scholar 

  61. S. An et al., J. Nat. Gas Sci. Eng. 48, 138 (2017)

    Article  Google Scholar 

  62. S. Iglauer et al., Phys. Rev. E 82, 056315 (2010)

    Article  ADS  Google Scholar 

  63. E.S. Boek, M. Venturoli, Comput. Math. Appl. 59, 2305 (2010)

    Article  MathSciNet  Google Scholar 

  64. P. Lallemand, L.S. Luo, Phys. Rev. E. 61, 6546 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  65. I. Ginzburg, Adv. Water Resour. 28, 1171 (2005)

    Article  ADS  Google Scholar 

  66. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)

    MathSciNet  Google Scholar 

  67. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)

    MathSciNet  Google Scholar 

  68. Z. Guo, C. Zheng, Int. J. Comput. Fluid Dyn. 22, 465 (2008)

    Article  Google Scholar 

  69. J.U. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100, 335 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  70. M. Latva-Kokko, D.H. Rothman, Phys. Rev. E 71, 056702 (2005)

    Article  ADS  Google Scholar 

  71. S. Leclaire et al., Int. J. Numer. Methods Fluids 82, 451 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  72. E.W. Washburn, Phys. Rev. 17, 273 (1921)

    Article  ADS  Google Scholar 

  73. F. Diotallevi et al., Eur. Phys. J. ST 166, 111 (2009)

    Article  Google Scholar 

  74. C.M. Pooley, H. Kusumaatmaja, J.M. Yeomans, Eur. Phys. J. ST 171, 63 (2009)

    Article  Google Scholar 

  75. D.P. Ziegler, J. Stat. Phys. 71, 1171 (1993)

    Article  ADS  Google Scholar 

  76. A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  77. X. He et al., J. Stat. Phys. 87, 115 (1997)

    Article  ADS  Google Scholar 

  78. B. Dong, Y.Y. Yan, W.Z. Li, Trans. Porous Media 88, 293 (2011)

    Article  Google Scholar 

  79. H. Zhao et al., Int. Commun. Heat Mass Transfer 85, 53 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Liu, H. Prediction of immiscible two-phase flow properties in a two-dimensional Berea sandstone using the pore-scale lattice Boltzmann simulation. Eur. Phys. J. E 41, 124 (2018). https://doi.org/10.1140/epje/i2018-11735-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11735-3

Keywords

Navigation