Skip to main content
Log in

Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

This article provides a comprehensive analysis of the energy transportation by virtue of the melting process of high-temperature phase change materials. We have developed a two-dimensional model for the boundary layer flow of non-Newtonian Carreau fluid. It is assumed that flow is caused by stretching of a cylinder in the axial direction by means of a linear velocity. Adequate local similarity transformations are employed to determine a set of non-linear ordinary differential equations which govern the flow problem. Numerical solutions to the resultant non-dimensional boundary value problem are computed via the fifth-order Runge-Kutta Fehlberg integration scheme. The solutions are captured for both zero and non-zero curvature parameters, i.e., for flow over a flat plate or flow over a cylinder. The flow and heat transfer attributes are witnessed to be prompted in an intricate manner by the melting parameter, the curvature parameter, the Weissenberg number, the power law index and the Prandtl number. We determined that one of the possible ways to boost the fluid velocity is to increase the melting parameter. Additionally, both the velocity of the fluid and the momentum boundary layer thickness are higher in the case of flow over a stretching cylinder. As expected, the magnitude of the skin friction and the rate of heat transfer decrease by raising the values of the melting parameter and the Weissenberg number.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Roberts, J. Fluid Mech. 4, 505 (1958)

    Article  ADS  Google Scholar 

  2. M. Epstein, D.H. Cho, J. Heat transfer 98, 531 (1976)

    Article  Google Scholar 

  3. C. Tien, Y.C. Yen, J. Appl. Meteorol. 4, 523 (1965)

    Article  ADS  Google Scholar 

  4. A.Y. Bakier, Transport Porous Media 29, 127 (1997)

    Article  Google Scholar 

  5. R.S.R. Gorla, M.A. Mansour, I.A. Hassanien, A.Y. Bakier, Transport Porous Media 36, 245 (1999)

    Article  Google Scholar 

  6. W.T. Cheng, C.H. Lin, Int. J. Heat Mass Transfer 50, 3026 (2007)

    Article  Google Scholar 

  7. N. Bachok, A. Ishak, I. Pop, Phys. Lett. A 374, 4075 (2010)

    Article  ADS  Google Scholar 

  8. T. Hayat, A. Shafiq, A. Alsaedi, J. Magn. & Magn. Mater. 405, 97 (2016)

    Article  ADS  Google Scholar 

  9. T. Hayat, Z. Hussain, M. Farooq, A. Alsaedi, J. Mol. Liq. 215, 749 (2016)

    Article  Google Scholar 

  10. T. Hayat, Z. Hussain, A. Alsaedi, B. Ahmad, J. Mol. Liq. 220, 200 (2016)

    Article  Google Scholar 

  11. T. Hayat, K. Muhammad, M. Farooq, A. Alsaedi, AIP Adv. 6, 015214 (2016) DOI:10.1063/1.4940932

    Article  ADS  Google Scholar 

  12. C.Y. Wang, Phys. Fluids 31, 466 (1988)

    Article  ADS  Google Scholar 

  13. C.Y. Wang, Commun. Non-linear Sci. Numer. Simul. 17, 1098 (2012)

    Article  ADS  Google Scholar 

  14. A. Ishak, R. Nazar, Eur. J. Sci. Res. 36, 22 (2009)

    Google Scholar 

  15. S. Mukhopadhyay, Ain Shams Eng. J. 4, 317 (2012)

    Article  Google Scholar 

  16. M. Khan, R. Malik, AIP Adv. 5, 127202 (2015) DOI:10.1063/1.4937346

    Article  ADS  Google Scholar 

  17. P.J. Carreau, Trans. Soc. Rheol. 116, 99 (1972)

    Article  Google Scholar 

  18. R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1987)

  19. H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, New York, 1989)

  20. J.N. Shadid, E.R.G. Eckert, Int. J. Heat Mass Transfer 35, 39 (1992)

    Article  Google Scholar 

  21. K. Khellaf, G. Lauriat, J. Non-Newton. Fluid Mech. 89, 45 (2000)

    Article  Google Scholar 

  22. R.R. Martins, F.S. Silveira, M.L. Martins-Costa, S. Frey, Lat. Am. Appl. Res. 38, 321 (2008)

    Google Scholar 

  23. N.S. Akbar, S. Nadeem, Ain Shams Eng. J. 5, 1307 (2014)

    Article  Google Scholar 

  24. N.S. Akbar, S. Nadeem, Z.H. Khan, Alex. Eng. J. 53, 191 (2014)

    Article  Google Scholar 

  25. J. Uddin, J.O. Marston, S.T. Thoroddsen, Phys. Fluids 24, 073104 (2012) DOI:10.1063/1.4736742

    Article  ADS  Google Scholar 

  26. M. Khan, Hashim, AIP Adv. 5, 107203 (2015) DOI:10.1063/1.4932627

    Article  ADS  Google Scholar 

  27. R.R. Rangi, N. Ahmad, Appl. Math. 3, 205 (2012)

    Article  MathSciNet  Google Scholar 

  28. V. Poply, P. Sing, K.K. Chaudhary, WSEAS Trans. Fluid Mech. 8, 159 (2013)

    Google Scholar 

  29. A. Pantokratoras, Appl. Math. Modell. 33, 413 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, Khan, M. & Saleh Alshomrani, A. Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder. Eur. Phys. J. E 40, 8 (2017). https://doi.org/10.1140/epje/i2017-11495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11495-6

Keywords

Navigation