Skip to main content
Log in

Effect of variable particle stiffness on force propagation and mechanical response of a composite granular material

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The force propagation and mechanical response are important for understanding the elasticity and deformation of a composite granular packings. In this paper, a 2D composite granular layers composed of particles with variable stiffness is proposed, and the effect of stiffness ratio between component particles on mechanical response is mainly considered. The results show that the decrease of stiffness ratio broadens the linear range of mechanical response and enhances the elasticity of the response in a composite granular system, showing a role similar with the friction in a monodisperse granular packings. Furthermore, a phase diagram for the crossover between a single-peaked and a double-peaked response is proposed, in which the critical stiffness ratio corresponding to the occurrence of the crossover decreases with the magnitude of external loading and increases with the friction. Finally, the microscopic mechanism of the crossover of the response is further discussed based on changes in contact network and force network.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  2. B. Andreotti, Y. Forterre, O. Pouliquen, Granular Media: Between Fluid and Solid (Cambridge University Press, Cambridge, 2013)

  3. G. Reydellet, E. Clément, Phys. Rev. Lett. 86, 3308 (2001)

    Article  ADS  Google Scholar 

  4. J. Geng, D. Howell, E. Longhi, R.P. Behringer, G. Reydellet, L. Vanel et al., Phys. Rev. Lett. 87, 035506 (2001)

    Article  ADS  Google Scholar 

  5. J. Geng, G. Reydellet, E. Clément, R.P. Behringer, Physica D 182, 274 (2003)

    Article  ADS  Google Scholar 

  6. M.J. Spannuth, N.W. Mueggenburg, H.M. Jaeger, S.R. Nagel, Granular Matter 6, 215 (2004)

    Google Scholar 

  7. A.P.F.Atman, P. Brunet, J. Geng, G. Reydellet, G. Combe, P. Claudin et al., J. Phys: Condens. Matter 17, S2391 (2005)

    ADS  Google Scholar 

  8. N. Gland, P. Wang, H.A. Makse, Eur. Phys. J. E 20, 179 (2006)

    Article  Google Scholar 

  9. C. Goldenberg, I. Goldhirsch, Phys. Rev. E 77, 041303 (2008)

    Article  ADS  Google Scholar 

  10. C. Goldenberg, I. Goldhirsch, Nature (London) 435, 188 (2005)

    Article  ADS  Google Scholar 

  11. C. Goldenberg, I. Goldhirsch, Phys. Rev. Lett. 89, 084302 (2002)

    Article  ADS  Google Scholar 

  12. Y.H. Yang, D.M. Wang, Q. Qin, Powder Technol. 26, 272 (2014)

    Google Scholar 

  13. S. Ostojic, D. Panja, Phys. Rev. Lett. 97, 208001 (2006)

    Article  ADS  Google Scholar 

  14. A.P.F. Atman, P. Claudin, G. Combe, R. Mari, EPL 101, 44006 (2013)

    Article  ADS  Google Scholar 

  15. A.P.F. Atman, P. Claudin, G. Combe, G.H.B. Martins, Granular Matter 16, 193 (2014)

    Article  Google Scholar 

  16. R.M. Nedderman, Statics and Kinematics of Granular Flows (Cambridge University Press, Cambridge, UK, 1992)

  17. S.B. Savage, in Physics of Dry Granular Media, edited by H.J. Herrmann, J.P. Hovi, S. Luding, NATO Advanced Studies Institute, Series B: Physics (Kluwer, Dordrecht, 1998) pp. 25--95

  18. W. Wu, E. Bauer, D. Kolymbas, Mech. Mater. 23, 45 (1996)

    Article  Google Scholar 

  19. G. Gudehus, K. Nübel, Geotechnique 54, 187 (2004)

    Article  Google Scholar 

  20. J.P. Bouchaud, M.E. Cates, P. Claudin, J. Phys. I 5, 639 (1995)

    Google Scholar 

  21. J.P. Wittmer, M.E. Cates, P. Claudin, J. Phys. I 7, 39 (1997)

    Google Scholar 

  22. J.P. Bouchaud, P. Claudin, E. Clément, M. Otto, G. Reydellet, C. R. Phys. 3, 141 (2002)

    Article  ADS  Google Scholar 

  23. D.A. Head, A.V. Tkachenko, T.A. Witten, Eur. Phys. J. E 6, 99 (2001)

    Article  Google Scholar 

  24. J.P. Bouchaud, P. Claudin, D. Levine, M. Otto, Eur. Phys. J. E 4, 451 (2001)

    Article  Google Scholar 

  25. M. Otto, J.P. Bouchaud, P. Claudin, J.E.S. Socolar, Phys. Rev. E 67, 031302 (2003)

    Article  ADS  Google Scholar 

  26. C. Daraio, V.F. Nesterenko, E.B. Herbold, S. Jin, Phys. Rev. Lett. 96, 058002 (2006)

    Article  ADS  Google Scholar 

  27. P.J. Wang, J.H. Xia, Y.D. Li, C.S. Liu, Phys. Rev. E 76, 041305 (2007)

    Article  ADS  Google Scholar 

  28. S. Viridi, S.N. Khotimah, AIP Conf. Proc. 1454, 219 (2012) arXiv:1110.1906

    Article  ADS  Google Scholar 

  29. S.F. Pinto, M.S. Couto, A.P.F. Atman, S.G. Alves, A.T. Bernardes, H.F.V. de Resende et al., Phys. Rev. lett. 99, 068001 (2007)

    Article  ADS  Google Scholar 

  30. P.A. Cundall, O.D.L. Strack, Geotechnique 29, 47 (1979)

    Article  Google Scholar 

  31. J. Shäfer, S. Dippel, D. Wolf, J. Phys. I 6, 5 (1996)

    Google Scholar 

  32. A.P.F. Atman, P. Claudin, G. Combe, Comput. Phys. Commun. 180, 612 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Wang, D. & Yang, Y. Effect of variable particle stiffness on force propagation and mechanical response of a composite granular material. Eur. Phys. J. E 39, 60 (2016). https://doi.org/10.1140/epje/i2016-16060-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16060-3

Keywords

Navigation