Skip to main content
Log in

On the vortex dynamics in fractal Fourier turbulence

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Incompressible, homogeneous and isotropic turbulence is studied by solving the Navier-Stokes equations on a reduced set of Fourier modes, belonging to a fractal set of dimension D . By tuning the fractal dimension parameter, we study the dynamical effects of Fourier decimation on the vortex stretching mechanism and on the statistics of the velocity and the velocity gradient tensor. In particular, we show that as we move from D = 3 to D ∼ 2.8 , the statistics gradually turns into a purely Gaussian one. This result suggests that even a mild fractal mode reduction strongly depletes the stretching properties of the non-linear term of the Navier-Stokes equations and suppresses anomalous fluctuations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995)

  2. A. Arnèodo et al., EPL 34, 411 (1996)

    Article  ADS  Google Scholar 

  3. K.R. Sreenivasan, R.A. Antonia, Annu. Rev. Fluid Mech. 29, 435 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Mordant, P. Metz, O. Michel, J.-F. Pinton, Phys. Rev. Lett. 87, 214501 (2001)

    Article  ADS  Google Scholar 

  5. L. Biferale, G. Boffetta, A. Celani, A. Lanotte, F. Toschi, Phys. Fluids 17, 021701 (2005) DOI:10.1063/1.1846771

    Article  ADS  MathSciNet  Google Scholar 

  6. H. Xu et al., Phys. Rev. Lett. 96, 024503 (2006)

    Article  ADS  Google Scholar 

  7. A. Arnèodo et al., Phys. Rev. Lett. 98, 254504 (2008)

    Article  ADS  Google Scholar 

  8. F. Toschi, E. Bodenschatz, Annu. Rev. Fluid Mech. 41, 375 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. R. H. Kraichnan, J. Fluid Mech. 47, 525 (1971)

    Article  ADS  Google Scholar 

  10. R.H. Kraichnan, J. Fluid Mech. 62, 305 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Meneveau, J. Katz, Annu. Rev. Fluid Mech. 32, 1 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Falkovich, K.R. Sreenivasan, Phys. Today 59, 43 (2006)

    Article  Google Scholar 

  13. A. Tsinober, in Turbulence Structure and Vortex Dynamics, edited by J.C.R. Hunt, J.C. Vassilicos (Cambridge University Press, Cambridge, 2011)

  14. R.H. Kraichnan, J. Math. Phys. 2, 124 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  15. S.A. Orszag, Lectures on the Statistical Theory of Turbulence, in Fluid Dynamics, Les Houches 1973, edited by R. Balian, J.L. Peube (Gordon and Breach, New York)

  16. U. Frisch, A. Pomyalov, I. Procaccia, S. Sankar Ray, Phys. Rev. Lett. 108, 074501 (2012)

    Article  ADS  Google Scholar 

  17. A.S. Lanotte, R. Benzi, L. Biferale, S.K. Malapaka, F. Toshi, Phys. Rev. Lett. 115, 264502 (2015)

    Article  ADS  Google Scholar 

  18. J.D. Fournier, U. Frisch, Phys. Rev. A 17, 747 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  19. T.D. Lee, Q. J. Appl. Math. 10, 69 (1952)

    Google Scholar 

  20. E. Hopf, Commun. Pure Appl. Math. 3, 201 (1950)

    Article  MathSciNet  Google Scholar 

  21. C. Cichowlas, P. Bonaïti, F. Debbasch, M.E. Brachet, Phys. Rev. Lett. 95, 264502 (2005)

    Article  ADS  Google Scholar 

  22. S.S. Ray, Pramana 84, 395 (2015)

    Article  ADS  Google Scholar 

  23. V. S. Lvov, A. Pomyalov, I. Procaccia, Phys. Rev. Lett. 89, 064501 (2002)

    Article  ADS  Google Scholar 

  24. P. Giuliani, M.H. Jensen, V. Yakhot, Phys. Rev. E 65, 036305 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. A.G. Lamorgese, D.A. Caughey, S.B. Pope, Phys. Fluids 17, 015106 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Y. Dubief, F. Delcayre, J. Turbul. 1, N11 (2000) DOI:10.1088/1468-5248/1/1/011

    Article  ADS  MathSciNet  Google Scholar 

  27. T. Ishihara, T. Gotoh, Y. Kaneda, Annu. Rev. Fluid Mech. 41, 165 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Biferale, A.S. Lanotte, F. Toschi, Physica D 237, 1969 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. L. Biferale, I. Procaccia, Phys. Rep. 414, 43 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Buzzicotti, L. Biferale, U. Frisch, S.S. Ray, Phys. Rev. E 93, 033109 (2016)

    Article  ADS  Google Scholar 

  31. G. Falkovich, Phys. Fluids 6, 1411 (1994) DOI:10.1063/1.868255

    Article  ADS  Google Scholar 

  32. D. Lohse, A. Müller-Groeling, Phys. Rev. Lett. 74, (10) (1995)

    Article  Google Scholar 

  33. U. Frisch, S. Kurien, R. Pandit, W. Pauls, S.S. Ray, A. Wirth, J.-Z. Zhu, Phys. Rev. Lett. 101, 144501 (2008)

    Article  ADS  Google Scholar 

  34. R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Phys. Rev. E 48, R29 (1993)

    Article  ADS  Google Scholar 

  35. S. Chakraborty, U. Frisch, S.S. Ray, J. Fluid Mech. 649, 275 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. T. Gotoh, D. Fukayama, T. Nakano, Phys. Fluids 14, 1065 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  37. R. Benzi, L. Biferale, R. Fisher, D.Q. Lamb, F. Toschi, J. Fluid Mech. 653, 221 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. G. Boffetta, A. Celani, A. Mazzino, Phys. Rev. E 71, 036307 (2005)

    Article  ADS  Google Scholar 

  39. M.S. Chong, A.E. Perry, B.J. Cantwell, Phys. Fluids A 2, 765 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  40. H.M. Blackburn, N.N. Mansour, B.J. Cantwell, J. Fluid Mech. 310, 269 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  41. B. Tao, J. Katz, C. Meneveau, J. Fluid Mech. 457, 35 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  42. B. Luthi, A. Tsinober, W. Kinzelbach, J. Fluid Mech. 528, 87 (2005)

    Article  ADS  Google Scholar 

  43. J. Martín, A. Ooi, M.S. Chong, J. Soria, Phys. Fluids 10, 2336 (1998) DOI:10.1063/1.869752

    Article  ADS  MathSciNet  Google Scholar 

  44. P. Viellefosse, Physica A 125, 150 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  45. B.J. Cantwell, Phys. Fluids A 4, 782 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  46. S.S. Girimaji, S.B. Pope, Phys. Fluids A 2, 242 (1990)

    Article  ADS  Google Scholar 

  47. M. Chertkov, A. Pumir, B. Shraiman, Phys. Fluids 11, 2394 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  48. L. Chevillard, C. Meneveau, Phys. Rev. Lett. 97, 174501 (2006)

    Article  ADS  Google Scholar 

  49. L. Chevillard, C. Meneveau, L. Biferale, F. Toschi, Phys. Fluids 20, 101504 (2008)

    Article  ADS  Google Scholar 

  50. F. van der Bos et al., Phys. Fluids 14, 2456 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  51. F. Waleffe, Phys. Fluids A 4, 350 (1992) DOI:10.1063/1.858309

    Article  ADS  MathSciNet  Google Scholar 

  52. P. Constantin, in New Perspectives in Turbulence, edited by L. Sirovich (Springer, Berlin, 1991) pp. 229--261

  53. G. Gallavotti, in Turbulence in Spatially Extended Systems, Les Houches 1992, edited by R. Benzi, C. Basdevant, S. Ciliberto (Nova Science, Commack, New York, 1993) pp. 45--74

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra S. Lanotte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanotte, A., Malapaka, S. & Biferale, L. On the vortex dynamics in fractal Fourier turbulence. Eur. Phys. J. E 39, 49 (2016). https://doi.org/10.1140/epje/i2016-16049-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16049-x

Keywords

Navigation