Skip to main content
Log in

Spiral crack patterns observed for melt-grown spherulites of poly(L-lactic acid) upon quenching

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this paper, we demonstrate the characteristic spiral cracking that appears on the surface of melt-grown poly(L-lactic acid) (PLLA) spherulites with relatively large sizes (greater than 0.4mm in diameter). The crack occurs via thermal shrinkage upon quenching after crystallization. Although concentric cracks on polymer spherulites have been found to occur in quite a few studies, spiral crack patterns have never been reported so far. The present spiral crack was observed for thick spherulites (> 10 μm), whereas the concentric crack pattern was frequently observed for thin spherulites (typically 5μm). The present PLLA spherulites exhibited a non-banded structure with no apparent structural periodicity at least on the scale of the spiral pitch, and thus no direct correlation between the crack pattern and the spherulitic structure was suggested. The spiral was revealed to be largely Archimedean of which the spiral pitch increases with an increase in the thickness of the spherulite. This may be interpreted in terms of a classical mechanical model for a thin layer with no delamination from the substrate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.D. Keith, F.J. Padden, J. Appl. Phys. 34, 2409 (1963)

    Article  ADS  Google Scholar 

  2. H.D. Keith, F.J. Padden, J. Appl. Phys. 35, 1270 (1964)

    Article  ADS  Google Scholar 

  3. H.D. Keith, F.J. Padden, J. Appl. Phys. 35, 1286 (1964)

    Article  ADS  Google Scholar 

  4. A. Toda, K. Taguchi, H. Kajioka, Macromolecules 41, 7505 (2008)

    Article  ADS  Google Scholar 

  5. H. Kajioka, S. Yoshimoto, K. Taguchi, A. Toda, Macromolecules 43, 3837 (2010)

    Article  ADS  Google Scholar 

  6. G. Strobl, The Physics of Polymers (Springer, Berlin, 1996).

  7. J. Martines-Salazar, M. Sanchez-Cuesta, J. Mater. Sci. Lett. 8, 490 (1989)

    Article  Google Scholar 

  8. S. Nurkhamidah, E.M. Woo, Ind. End. Chem. Res. 50, 4494 (2011)

    Article  Google Scholar 

  9. C. Fraschini, R. Plesu, J.-R. Sarasua, R.E. Prud’homme, J. Polym. Sci. B: Polym. Phys. 43, 3308 (2005)

    Article  ADS  Google Scholar 

  10. J.K. Hobbs, T.J. McMaster, M.J. Miles, P.J. Barham, Polymer 37, 3241 (1996)

    Article  Google Scholar 

  11. K. Kuboyama, T. Ougisawa, Poym. J. 40, 1005 (2008)

    Google Scholar 

  12. S. Nurkhamidah, E.M. Woo, Colloid Polym. Sci. 290, 275 (2012)

    Article  Google Scholar 

  13. L.-T. Lee, E.M. Woo, Y.-T. Hsieh, Polymer 53, 5313 (2012)

    Article  Google Scholar 

  14. E.M. Woo, G. Lugito, Y.-T. Hsieh, S. Nurkhamidah, AIP Conf. Proc. 1586, 7 (2014)

    Article  Google Scholar 

  15. Y.-T. Hsieh, R. Ishige, Y. Higaki, E.M. Woo, A. Takahara, Polymer 55, 6906 (2014)

    Article  Google Scholar 

  16. N.-D. Tien, Y. Nishikawa, M. Hashimoto, M. Tosaka, S. Sasaki, S. Sakurai, Polym. J. 47, 37 (2015)

    Article  Google Scholar 

  17. E.W. Fischer, H.J. Sterzel, G. Wegner, Kolloid Z. Z. Polymere 251, 980 (1973)

    Article  Google Scholar 

  18. Y. He, Z. Fan, Y. Hu, T. Wu, J. Wei, S. Li, Eur. Polym. J. 43, 4431 (2007)

    Article  Google Scholar 

  19. T. Sasaki, R. Asakawa, K. Sakurai, Polym. J. 41, 787 (2009)

    Article  Google Scholar 

  20. Y. Ohkoshi, H. Shirai, T. Gotoh, M. Nagura, Sen’i Gakkaishi 55, 21 (1999)

    Article  Google Scholar 

  21. M. Pyda, R.C. Bopp, B. Wunderlich, J. Chem. Thermodyn. 36, 731 (2004)

    Article  Google Scholar 

  22. H. Kajioka, A. Hoshino, H. Miyaji, Y. Miyamoto, A. Toda, M. Hikosaka, Polymer 46, 8717 (2005)

    Article  Google Scholar 

  23. M. Sendova, K. Willis, Appl. Phys. A 76, 957 (2003)

    Article  ADS  Google Scholar 

  24. D.C. Meyer, T. Leisegang, A.A. Levin, P. Paufler, A.A. Volinsky, Appl. Phys. A 78, 303 (2004)

    Article  ADS  Google Scholar 

  25. D. Wu, Y.Y.-J. Yin, H.-M. Xie, F.-L. Dai, Chin. Phys. Lett. 30, 036801 (2013)

    Article  ADS  Google Scholar 

  26. J. Marthelot, B. Roman, J. Bico, J. Teisseire, D. Dalmas, F. Melo, Phys. Rev. Lett. 113, 085502 (2014)

    Article  ADS  Google Scholar 

  27. A. Turing, Philos. Trans. R. Soc. London B 237, 37 (1952)

    Article  ADS  Google Scholar 

  28. J.P. Keener, J.J. Tyson, Physica D 21, 307 (1986)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sasaki.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, F., Sobajima, T., Irie, S. et al. Spiral crack patterns observed for melt-grown spherulites of poly(L-lactic acid) upon quenching. Eur. Phys. J. E 39, 41 (2016). https://doi.org/10.1140/epje/i2016-16041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16041-6

Keywords

Navigation