Skip to main content
Log in

Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate microphase separation patterns on curved surfaces in three-dimensional space by numerically solving a nonlocal Cahn-Hilliard equation for diblock copolymers. In our model, a curved surface is implicitly represented as the zero level set of a signed distance function. We employ a discrete narrow band grid that neighbors the curved surface. Using the closest point method, we apply a pseudo-Neumann boundary at the boundary of the computational domain. The boundary treatment allows us to replace the Laplace-Beltrami operator by the standard Laplacian operator. In particular, we can apply standard finite difference schemes in order to approximate the nonlocal Cahn-Hilliard equation in the discrete narrow band domain. We employ a type of unconditionally stable scheme, which was introduced by Eyre, and use the Jacobi iterative to solve the resulting implicit discrete system of equations. In addition, we use the minimum number of grid points for the discrete narrow band domain. Therefore, the algorithm is simple and fast. Numerous computational experiments are provided to study microphase separation patterns for diblock copolymers on curved surfaces in three-dimensional space.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.P. Campbell, G.J. Lau, J.L. Feaver, M.P. Stoykovich, Macromolecules 45, 1587 (2012)

    Article  ADS  Google Scholar 

  2. C. Singh, M. Goulian, A.J. Liu, G.H. Fredrickson, Macromolecules 27, 2974 (1994)

    Article  ADS  Google Scholar 

  3. F. Liu, N. Goldenfeld, Phys. Rev. A 39, 4805 (1989)

    Article  ADS  Google Scholar 

  4. R. Choksi, M.A. Peletier, J.F. Williams, SIAM J. Appl. Math. 69, 1712 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Tang, F. Qiu, H. Zhang, Y. Yang, Phys. Rev. E 72, 016710 (2005)

    Article  ADS  Google Scholar 

  6. T. Baumgart, S.T. Hess, W.W. Webb, Nature 425, 821 (2003)

    Article  ADS  Google Scholar 

  7. A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Science 299, 1716 (2003)

    Article  ADS  Google Scholar 

  8. P. Sens, S.A. Safran, Eur. Phys. J. E 1, 237 (2000)

    Article  Google Scholar 

  9. K. Binder, S. Puri, S.K. Das, J. Horbach, J. Stat. Phys. 138, 51 (2010)

    Article  MATH  ADS  Google Scholar 

  10. G. Brown, A. Chakrabarti, J. Chem. Phys. 102, 1440 (1995)

    Article  ADS  Google Scholar 

  11. K. Binder, J. Non-Equil. Thermodyn. 23, 1 (1998)

    Article  MATH  Google Scholar 

  12. H. Xiang, K. Shin, T. Kim, S.I. Moon, T.J. McCarthy, T.P. Russell, Macromolecules 37, 5660 (2004)

    Article  ADS  Google Scholar 

  13. R. Choksi, M. Maras, J.F. Williams, SIAM J. Appl. Dyn. Syst. 10, 1344 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Pinna, A.V. Zvelindovsky, Eur. Phys. J. B 85, 1 (2012)

    Article  Google Scholar 

  15. D. Jeong, J. Shin, Y. Li, Y. Choi, J.-H. Jung, S. Lee, J. Kim, Curr. Appl. Phys. 14, 1263 (2014)

    Article  ADS  Google Scholar 

  16. R. Choksi, X. Ren, J. Stat. Phys. 113, 151 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. S.W. Sides, G.H. Fredrickson, Polymer 44, 5859 (2003)

    Article  Google Scholar 

  18. S.W. Sides, B.J. Kim, E.J. Kramer, G.H. Fredrickson, Phys. Rev. Lett. 96, 250601 (2006)

    Article  ADS  Google Scholar 

  19. K.O. Rasmussen, G. Kalosakas, J. Polym. Sci. Pol. Phys. 40, 1777 (2002)

    Article  ADS  Google Scholar 

  20. H.D. Ceniceros, G.H. Fredrickson, Multiscale Model. Simul. 2, 452 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Shahriari, PhD thesis, Simon Fraser Univeristy (2010)

  22. T.L. Chantawansri, A.W. Bosse, A. Hexemer, H.D. Ceniceros, C.J. García-Cervera, E.J. Kramer, G.H. Fredrickson, Phys. Rev. E 75, 031802 (2007)

    Article  ADS  Google Scholar 

  23. I. Chavel, Eigenvalues in Riemannian Geometry, Vol. 115 (Academic Press, London, 1984)

  24. C.B. Macdonald, S.J. Ruuth, J. Sci. Comput. 35, 219 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Osher, R.P. Fedkiw, J. Comput. Phys. 169, 463 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. D.J. Eyre, in MRS Proceedings, Vol. 529 (Cambridge University Press, 1998) p. 39

  27. I.N. Bronshtein, K.A. Semendyayev, Handbook of Mathematics, 3rd edition (Springer-Verlag, New York, 1997) p. 892

  28. T. Ohta, K. Kawasaki, Macromolecules 19, 2621 (1986)

    Article  ADS  Google Scholar 

  29. Y. Nishiura, I. Ohnishi, Phys. D 84, 31 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Puri, H.L. Frisch, J. Phys. A 27, 6027 (1994)

    Article  MATH  ADS  Google Scholar 

  31. S. Glotzer, D. Stauffer, N. Jan, Phys. Rev. Lett. 72, 4109 (1994)

    Article  ADS  Google Scholar 

  32. S. Glotzer, E.A. Di Marzio, M. Muthukumar, Phys. Rev. Lett. 74, 2034 (1995)

    Article  ADS  Google Scholar 

  33. C.B. Macdonald, J. Brandman, S.J. Ruuth, J. Comput. Phys. 230, 7944 (2011)

    MATH  MathSciNet  ADS  Google Scholar 

  34. J.B. Greer, J. Sci. Comput. 29, 321 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. H.-K. Zhao, S. Osher, R. Fedkiw, in Proceedings of the IEEE Workshop on Variational and Level Set Methods, Washington, DC, 2001, edited by A.D. Williams (IEEE Comput. Soc., Los Alamitos, 2001) p. 194

  36. H.-K. Zhao, S. Osher, B. Merriman, M. Kang, Comput. Vis. Image Und. 80, 295 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, D., Kim, J. Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation. Eur. Phys. J. E 38, 117 (2015). https://doi.org/10.1140/epje/i2015-15117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15117-1

Keywords

Navigation